
Comedi

The Control and Measurement Device
Interface handbook

David Schleef
ds@schleef.org

Frank Hess
fmhess@users.sourceforge.net

Herman Bruyninckx
Herman.Bruyninckx@mech.kuleuven.ac.be

Copyright © 1998-2003 David Schleef

Copyright © 2001-2003, 2005 Frank Mori Hess

Copyright © 2002-2003 Herman Bruyninckx

Abstract

Comedi is a free software project to interface digital acquisition (DAQ) cards. It is the
combination of three complementary software items: (i) a generic, device-independent API, (ii)
a collection of Linux kernel modules that implement this API for a wide range of cards, and (iii)
a Linux user space library with a developer-oriented programming interface to configure and use
the cards.

1

Comedi

1. Overview

Comedi is a free software project that develops drivers, tools, and libraries for various forms of data
acquisition: reading and writing of analog signals; reading and writing of digital inputs/outputs; pulse
and frequency counting; pulse generation; reading encoders; etc. The project’s source code is distributed
in two packages, comedi (http://www.comedi.org/download.php) and comedilib

(http://www.comedi.org/download.php), and provides several Linux kernel modules and a user
space library:

• Comedi is a collection of drivers for a variety of common data acquisition plug-in boards (which are
called “devices” in Comedi terminology). The drivers are implemented as the combination of (i) one
single core Linux kernel module (called “comedi”) providing common functionality, and (ii)
individual low-level driver modules for each device.

• Comedilib is a separately distributed package containing a user-space library that provides a
developer-friendly interface to the Comedi devices. Included in the Comedilib package are
documentation, configuration and calibration utilities, and demonstration programs.

• Kcomedilib is a Linux kernel module (distributed with the comedi package) that provides the same
interface as comedilib in kernel space, and suitable for real-time tasks. It is effectively a “kernel
library” for using Comedi from real-time tasks.

Comedi works with standard Linux kernels, but also with its real-time extensions RTAI
(http://www.rtai.org) and RTLinux/GPL (http://www.rtlinux-gpl.org/).

This section gives a high-level introduction to which functionality you can expect from the software.
More technical details and programming examples are given in the following sections of this document.

1.1. What is a “device driver”?

A device driver is a piece of software that interfaces a particular piece of hardware: a printer, a sound
card, a motor drive, etc. It translates the primitive, device-dependent commands with which the hardware
manufacturer allows you to configure, read and write the electronics of the hardware interface into more
abstract and generic function calls and data structures for the application programmer.

David Schleef started the Comedi project to put a generic interface on top of lots of different cards for
measurement and control purposes. This type of cards are often called data acquisition (or DAQ) cards.

Analog input and output cards were the first goal of the project, but now Comedi also provides a device
independent interface to digital input and output cards, and counter and timer cards (including encoders,
pulse generators, frequency and pulse timers, etc.).

Schleef designed a structure which is a balance between modularity and complexity: it’s fairly easy to
integrate a new card because most of the infrastructure part of other, similar drivers can be reused, and

2

Comedi

learning the generic and hence somewhat “heavier” Comedi API doesn’t scare away new contributors
from integrating their drivers into the Comedi framework.

1.2. Policy vs. mechanism

Device drivers are often written by application programmers, that have only their particular application in
mind; especially in real-time applications. For example, one writes a driver for the parallel port, because
one wants to use it to generate pulses that drive a stepper motor. This approach often leads to device
drivers that depend too much on that particular application, and are not general enough to be re-used for
other applications. One golden rule for the device driver writer is to separate mechanism and policy:

• Mechanism. The mechanism part of the device interface is a faithful representation of the bare
functionality of the device, independent of what part of the functionality an application will use.

• Policy. Once a device driver offers a software interface to the mechanism of the device, an application
writer can use this mechanism interface to use the device in one particular fashion. That is, some of the
data stuctures offered by the mechanism are interpreted in specific physical units, or some of them are
taken together because this composition is relevant for the application. For example, a analog output
card can be used to generate voltages that are the inputs for the electronic drivers of the motors of a
robot; these voltages can be interpreted as setpoints for the desired velocity of these motors, and six of
them are taken together to steer one particular robot with six-degrees of freedom. Some of the other
outputs of the same physical device can be used by another application program, for example to
generate a sine wave that drives a vibration shaker.

So, Comedi focuses only on the mechanism part of DAQ interfacing. The project does not provide the
policy parts, such as Graphical User Interfaces to program and display acquisitions, signal processing
libraries, or control algorithms.

1.3. A general DAQ device driver package

From the point of view of application developers, there are many reasons to welcome the standardization
of the API and the architectural structure of DAQ software:

• API: devices that offer similar functionalities, should have the same software interface, and their
differences should be coped with by parameterizing the interfaces, not by changing the interface for
each new device in the family. However, the DAQ manufacturers have never been able (or willing) to
come up with such a standardization effort themselves.

• Architectural structure: many electronic interfaces have more than one layer of functionality
between the hardware and the operating system, and the device driver code should reflect this fact. For
example, many different interface cards use the same PCI driver chips, or use the parallel port as an
intermediate means to connect to the hardware device. Hence, “lower-level” device drivers for these
PCI chips and parallel ports allow for an increased modularity and re-useability of the software.
Finding the generic similarities and structure among different cards helps in developing device drivers
faster and with better documentation.

3

Comedi

In the case of Linux as the host operating system, device driver writers must keep the following
Linux-specific issues in mind:

• Kernel space vs. User space. The Linux operating system has two levels that require basically
different programming approaches. Only privileged processes can run in the kernel, where they have
access to all hardware and to all kernel data structures. Normal application programs can run their
processes only in user space, where these processes are shielded from each other, and from direct
access to hardware and to critical data of the operating system; these user space programs execute
much of the operating system’s functionality through system calls.

Device drivers typically must access specific addresses on the bus, and hence must (at least partially)
run in kernel space. Normal users program against the API of Comedi, while Comedi device driver
writers use the API offered by Kcomedilib. Typical examples of the latter are the registration of
interrupt handler routines, and the handling of events.

• Device files or device file system. Users who write an application for a particular device, must link
their application to that device’s device driver. Part of this device driver, however, runs in kernel space,
and the user application in user space. So, the operating system provides an interface between both. In
Linux or Unix, these interfaces are in the form of “files” in the /dev directory (2.2.x kernels or earlier)
or /devfs directory (2.4.x kernels and later). Each device supported in the kernel has a representative
as such a user space device file, and its functionality can be accessed by classical Unix file I/O: open,
close, read, write, and ioctl.

• /proc interface. Linux (and some other UNIX operating systems) offer a file-like interface to
attached devices (and other OS-related information) via the /proc directories. These “files” do not
really exist, but it gives a familiar interface to users, with which they can inspect the current status of
each device.

• Direct Memory Access (DMA) vs. Programmed Input/Output (PIO). Almost all devices can be
interfaced in PIO mode: the processor is responsible for directly accessing the bus addresses allocated
to the device whenever it needs to read or write data. Some devices also allow DMA: the device and
the memory “talk” to each other directly, without needing the processor. DMA is a feature of the bus,
not of the operating system (which, of course, has to support its processes to use the feature).

• Real-time vs. non real-time. If the device is to be used in a RTLinux/GPL
(http://www.rtlinux-gpl.org/) or RTAI (http://www.rtai.org) application, there are a few extra
requirements, because not all system calls are available in the kernel of the real-time operating
systems RTLinux/GPL (http://www.rtlinux-gpl.org/) or RTAI (http://www.rtai.org). The APIs of RTAI
and RTLinux/Free differ in different ways, so the Comedi developers have spent a lot of efforts to
make generic wrappers to the required RTOS primitives: timers, memory allocation, registration of
interrupt handlers, etc.

1.4. DAQ signals

The cards supported in Comedi have one or more of the following signals: analog input, analog output,

4

Comedi

digital input, digital output, counter input, counter output, pulse input, pulse output:

• Digital signals are conceptually quite simple, and don’t need much configuration: the number of
channels, their addresses on the bus, and their input or output direction.

• Analog signals are a bit more complicated. Typically, an analog acquisition channel can be
programmed to generate or read a voltage between a lower and an upper threshold (e.g., -10V and
+10V); the card’s electronics can be programmed to automatically sample a set of channels, in a
prescribed order, to buffer sequences of data on the board; or to use DMA or an interrupt routine to
dump the data in a prescribed part of memory.

• Pulse-based signals (counters, timers, encoders, etc.) are conceptually only a bit more complex than
digital inputs and outputs, in that they only add some timing specifications to the signal. Comedi has
still only a limited number of drivers for this kind of signals, although most of the necessary API and
support functionality is available.

In addition to these “real” DAQ functions, Comedi also offers basic timer access.

1.5. Device hierarchy

Comedi organizes all hardware according to the following generic hierarchy:

• Channel: the lowest-level hardware component, that represents the properties of one single data
channel; for example, an analog input, or a digital output. Each channel has several parameters, such
as: the voltage range; the reference voltage; the channel polarity (unipolar, bipolar); a conversion
factor between voltages and physical units; the binary values “0” and “1”; etc.

• Sub-device: a set of functionally identical channels that are physically implemented on the same (chip
on an) interface card. For example, a set of 16 identical analog outputs. Each sub-device has
parameters for: the number of channel and the type of the channels.

• Device: a set of sub-devices that are physically implemented on the same interface card; in other
words, the interface card itself. For example, the National Instruments 6024E device has a
sub-device with 16 analog input channels, another sub-device with two analog output channels, and a
third sub-device with eight digital inputs/outputs. Each device has parameters for: the device
identification tag from the manufacturer, the identification tag given by the operating system (in order
to discriminate between multiple interface cards of the same type), the number of sub-devices, etc.

Some interface cards have extra components that don’t fit in the above-mentioned classification, such as
an EEPROM to store configuration and board parameters, or calibration inputs. These special
components are also classified as “sub-devices” in Comedi.

1.6. Acquisition terminology

This Section introduces the terminology that this document uses when talking about “acquisitions.”
Figure 1 depicts a typical acquisition sequence:

• The sequence has a start and an end. At both sides, the software and the hardware need some finite
initialization or settling time.

5

Comedi

• The sequence consists of a number of identically repeated scans. This is where the actual data
acquisitions are taking place: data is read from the card, or written to it. Each scan also has a begin, an
end, and a finite setup time. Possibly, there is also a settling time (“scan delay”) at the end of a scan.

So, the hardware puts a lower boundary (the scan interval) on the minimum time needed to complete
a full scan.

• Each scan contains one or more conversions on particular channels, i.e., the AD/DA converter is
activated on each of the programmed channels, and produces a sample, again in a finite conversion
time, starting from the moment in time called the sample time in Figure 1 (sometimes also called the
“timestamp”), and caused by a triggering event, called convert. In addition, each hardware has limits
on the minimum conversion interval it can achieve, i.e., the minimum time it needs between
subsequent conversions.

Some hardware must multiplex the conversions onto one single AD/DA hardware, such that the
conversions are done serially in time (as shown on the Figure); other cards have the hardware to do
two or more acquisitions in parallel. The begin of each conversion is “triggered” by some internally or
externally generated pulse, e.g., a timer.

In general, not only the begin of a conversion is triggered, but also the begin of a scan and of a sequence.
Comedi provides the API to configure what triggering source one wants to use in each case. The API
also allows to specify the channel list, i.e., the sequence of channels that needs to be acquired during
each scan.

Figure 1. Acquisition sequence. (Figure courtesy of Kurt Mueller
(mailto:Kurt.Mueller@aerodynamics.ch).)

1.7. DAQ functions

The basic data acquisition functionalities that Comedi offers work on channels, or sets of channels:

• Single acquisition: Comedi has function calls to synchronously perform one single data acquisition
on a specified channel: comedi_data_read(), comedi_data_write(), comedi_dio_read(),
comedi_dio_write(). “Synchronous” means that the calling process blocks until the data
acquisition has finished.

• Instruction: a comedi_do_insn() instruction performs (possibly multiple) data acquisitions on a
specified channel, in a synchronous way. So, the function call blocks until the whole acquisition has
finished.

6

Comedi

In addition, comedi_do_insnlist() executes a list of instructions (on different channels) in one
single (blocking, synchronous) call, such that the overhead involved in configuring each individual
acquisition is reduced.

• Scan: a scan is an acquisition on a set of different channels, with a specified sequence and timing.

Scans are not directly available as stand-alone function calls in the Comedi API. They are the internal
building blocks of a Comedi command (see below).

• Command: a command is sequence of scans, for which conditions have been specified that determine
when the acquisition will start and stop. A comedi_command() function call generates aynchronous
data acquisition: as soon as the command information has been filled in, the comedi_command()
function call returns, the hardware of the card takes care of the sequencing and the timing of the data
acquisition, and makes sure that the acquired data is delivered in a software buffer provided by the
calling process. Asynchronous operation requires some form of “callback” functionality to prevent
buffer overflow: after the calling process has launched the acquisition command, it goes off doing
other things, but not after it has configured the “handler” that the interface card can use when it needs
to put data in the calling process’s buffer. Interrupt routines or DMA are typical techniques to allow
such asynchronous operation. Their handlers are configured at driver load time, and can typically not
be altered from user space.

Buffer management is not the only asynchronous activity: a running acquisition must eventually be
stopped too, or it must be started after the comedi_command() function call has prepared (but not
started) the hardware for the acquisition. The command functionality is very configurable with respect
to choosing which events will signal the starting or stopping of the programmed acquisition: external
triggers, internal triggers, end of scan interrupts, timers, etc. The user of the driver can execute a
Comedi instruction that sends a trigger signal to the device driver. What the driver does exactly with
this trigger signal is determined in the specific driver. For example, it starts or stops the ongoing
acquisition. The execution of the event associated with this trigger instruction is synchronous with the
execution of the trigger instruction in the device driver, but it is asynchronous with respect to the
instruction or command that initiated the current acquisition.

Typically, there is one synchronous triggering instruction for each subdevice.

Note that software triggering is only relevant for commands, and not for instructions: instructions are
executed synchronously in the sense that the instruction call blocks until the whole instruction has
finished. The command call, on the other hand, activates an acquisition and returns before this
acquisition has finished. So, the software trigger works asynchronously for the ongoing acquisition.

1.8. Supporting functionality

The full command functionality cannot be offered by DAQ cards that lack the hardware to autonomously
sequence a series of scans, and/or to support interrupt or DMA callback functionality. For these cards,

7

Comedi

the command functionality must be provided in software. And because of the quite strict real-time
requirements for a command acquisition, a real-time operating system should be used to translate the
command specification into a correctly timed sequence of instructions. Such a correct translation is the
responsibility of the device driver developer for the card. However, Comedi provides the
comedi_rt_timer kernel module to support such a virtual command execution under RTAI or
RTLinux/Free.

Comedi not only offers the API to access the functionality of the cards, but also to query the capabilities
of the installed devices. That is, a user process can find out on-line what channels are available, and what
their physical parameters are (range, direction of input/output, etc.).

Buffering is another important aspect of device drivers: the acquired data has to be stored in such
buffers, because, in general, the application program cannot guarantee to always be ready to provide or
accept data as soon as the interface board wants to do a read or write operation. Therefore, Comedi offers
all functionality to configure and manage data buffers, abstracting away the intricacies of buffer
management at the bare operating system level.

As already mentioned before, Comedi contains more than just procedural function calls, since it also
offers event-driven (“asynchronous”) functionality: the data acquisition can signal its completion by
means of an interrupt or a callback function call. Callbacks are also used to signal errors during the data
acquisition or when writing to buffers, or at the end of a scan or acquisition that has been launched
previously to take place asynchronously (i.e., the card fills up som shared memory buffer autonomously,
and only warns the user program after it has finished). The mechanisms for synchronization and interrupt
handling are a bit different when used in real-time (RTAI or RTLinux/Free) or non real-time, but both
contexts are encapsulated wihting the same Comedi calls.

Because multiple devices can all be active at the same time, Comedi provides locking primitives to
ensure atomic operations on critical sections of the code or data structures.

Finally, Comedi offers the previously mentioned “high-level” interaction, i.e., at the level of user space
device drivers, through file operations on entries in the /dev directory (for access to the device’s
functionality), or interactively from the command line through the “files” in the /proc directory (which
allow to inspect the status of a Comedi device).

2. Configuration

This section assumes that you have successfully compiled and installed the Comedi software, that your
hardware device is in your computer, and that you know the relevant details about it, i.e., what kind of
card it is, the I/O base, the IRQ, jumper settings related to input ranges, etc.

8

Comedi

2.1. Configuration

Before being able to get information from a DAQ card, you first have to tell the Comedi core kernel
module which device you have, which driver you want to attach to the card, and which run-time options
you want to give to the driver. This configuration is done by running the comedi_config command. (As
root of course.) Here is an example of how to use the command (perhaps you should read its man page
now):

PATH=/sbin:/usr/sbin:/usr/local/sbin:$PATH
comedi_config /dev/comedi0 labpc-1200 0x260,3

This command says that the “file” /dev/comedi0 can be used to access the Comedi device that uses the
labpc-1200 board, and that you give it two run-time parameters (0x260 and 3). More parameters are
possible, for example to discriminate between two or more identical cards in your system.

If you want to have the board configured in this way every time you boot, put the lines above into a
start-up script file of your Linux system (for example, the /etc/rc.d/rc.local file), or for PCMCIA
boards the appropriate place is the /etc/pcmcia/comedi script. For non-PCMCIA boards, you can also
arrange to have your driver loaded and comedi_config run with by adding a few lines to
/etc/modules.conf (see the INSTALL file for the comedi kernel modules). You can, of course, also run
comedi_config at a command prompt.

This tutorial goes through the process of configuring Comedi for two devices, a National
Instruments AT-MIO-16E-10, and a Data Translation DT2821-F-8DI.

The NI board is plug-and-play. The current ni_atmio driver has kernel-level ISAPNP support, which is
used by default if you do not specify a base address. So you could simply run comedi_config as

comedi_config /dev/comedi0 ni_atmio

For the Data Translation board, you need to have a list of the jumper settings; these are given in the
Comedi manual section about this card. (Check first to see whether they are still correct!) The card
discussed her is a DT2821-f-8di. The man page of comedi_config tells you that you need to know the
I/O base, IRQ, DMA 1, DMA 2. However, the Comedi driver also recognizes the
differential/single-ended and unipolar/bipolar jumpers. As always, the source is the final authority, and
looking in module/dt282x.c tells us that the options list is interpreted as:

(... TO BE FILLED IN ...)

So, the appropriate options list is:

0x200,4„1,1,1

and the full configuration command is:

9

Comedi

comedi_config /dev/comedi1 dt2821-f-8di 0x200,4„1,1,1

The differential/single-ended number is left blank, since the driver already knowns (from the board
name), that it is differential. Also the DMA numbers are left blank, since we don’t want the driver to use
DMA. (Which could interfere with the sound card...) Keep in mind that things commented in the source,
but not in the documentation are about as likely to change as the weather, so put good comments next to
the following line when you put it in a start-up file.

So now you have your boards configured correctly. Since data acquisition boards are not typically
well-engineered, Comedi sometimes can’t figure out if the board is actually there. If it can’t, it assumes
you are right. Both of these boards are well-made, so Comedi will give an error message if it can’t find
them. The Comedi kernel module, since it is a part of the kernel, prints messages to the kernel logs,
which you can access through the command dmesg or the file /var/log/messages. Here is a
configuration failure (from dmesg):

comedi0: ni_atmio: 0x0200 can’t find board

When it does work, you get:

comedi0: ni_atmio: 0x0260 at-mio-16e-10 (irq = 3)

Note that it also correctly identified the board.

2.2. Getting information about a card

So now that you have Comedi talking to the hardware, try to talk to Comedi. Here’s some pretty
low-level information, which can sometimes be useful for debugging:

cat /proc/comedi

On the particular system this demonstration was carried out, this command gives:

comedi version 0.6.4
format string
0: ni_atmio at-mio-16e-10 7
1: dt282x dt2821-f-8di 4

This documentation feature is not well-developed yet. Basically, it currently returns the driver name, the
device name, and the number of subdevices.

In the demo/ directory, there is a command called info, which provides information about each
subdevice on the board. Its output can be rather long, if the board has several subdevices. Here’s part of
the output of the National Instruments board (which is on /dev/comedi0), as a result of the
command demo/info /dev/comedi0:

10

Comedi

overall info:
version code: 0x000604
driver name: ni_atmio
board name: at-mio-16e-10
number of subdevices: 7

subdevice 0:
type: 1 (analog input)
number of channels: 16
max data value: 4095

...

The overall info gives information about the device; basically the same information as /proc/comedi.

This board has seven subdevices. Devices are separated into subdevices that each have a distinct purpose;
e.g., analog input, analog output, digital input/output. This board also has an EEPROM and calibration
DACs that are also subdevices.

Comedi has more information about the device than what is displayed above, but demo/info doesn’t
currently display this.

3. Writing Comedi programs

This Section describes how a well-installed and configured Comedi package can be used in an
application, to communicate data with a set of Comedi devices. Section 4 gives more details about the
various acquisition functions with which the application programmer can perform data acquisition in
Comedi.

Also don’t forget to take a good look at the demo directory of the Comedilib source code. It contains lots
of examples for the basic functionalities of Comedi.

3.1. Your first Comedi program

This example requires a card that has analog or digital input. This progam opens the device, gets the
data, and prints it out:

#include <stdio.h> /* for printf() */
#include <comedilib.h>

int subdev = 0; /* change this to your input subdevice */
int chan = 0; /* change this to your channel */
int range = 0; /* more on this later */
int aref = AREF_GROUND; /* more on this later */

11

Comedi

int main(int argc,char *argv[])
{
comedi_t *it;
lsampl_t data;

it=comedi_open("/dev/comedi0");

comedi_data_read(it,subdev,chan,range,aref, & data);

printf("%d\n",data);

return 0;
}

The comedi_open() can only be successful if the comedi0 device file is configured to point to a valid
Comedi driver. Section 2.1 explains how this driver is linked to the “device file”.

The code above is basically the guts of demo/inp.c, without error checking or fancy options. Compile
the program using

cc tut1.c -lcomedi -o tut1

(Replace cc by your favourite C compiler command.)

The range variable tells Comedi which gain to use when measuring an analog voltage. Since we don’t
know (yet) which numbers are valid, or what each means, we’ll use 0, because it won’t cause errors.
Likewise with aref, which determines the analog reference used.

3.2. Converting samples to voltages

If you selected an analog input subdevice, you probably noticed that the output of tut1 is a number
between 0 and 4095, or 0 and 65535, depending on the number of bits in the A/D converter. Comedi
samples are always unsigned, with 0 representing the lowest voltage of the ADC, and 4095 the highest.
Comedi compensates for anything else the manual for your device says. However, you probably prefer to
have this number translated to a voltage. Naturally, as a good programmer, your first question is: “How
do I do this in a device-independent manner?”

Most devices give you a choice of gain and unipolar/bipolar input, and Comedi allows you to select
which of these to use. This parameter is called the “range parameter,” since it specifies the “input range”
for analog input (or “output range” for analog output.) The range parameter represents both the gain and
the unipolar/bipolar aspects.

Comedi keeps the number of available ranges and the largest sample value for each subdevice/channel
combination. (Some devices allow different input/output ranges for different channels in a subdevice.)

12

Comedi

The largest sample value can be found using the function

lsampl_t comedi_get_maxdata(comedi_t * device, unsigned int subdevice, unsigned int channel))

The number of available ranges can be found using the function:

int comedi_get_n_ranges(comedi_t * device, unsigned int subdevice, unsigned int channel);

For each value of the range parameter for a particular subdevice/channel, you can get range information
using:

comedi_range * comedi_get_range(comedi_t * device,
unsigned int subdevice, unsigned int channel, unsigned int range);

which returns a pointer to a comedi_range structure, which has the following contents:

typedef struct{
double min;
double max;
unsigned int unit;

}comedi_range;

The structure element min represents the voltage corresponding to comedi_data_read() returning 0, and
max represents comedi_data_read() returning maxdata, (i.e., 4095 for 12 bit A/C converters, 65535 for
16 bit, or, 1 for digital input; more on this in a bit.) The unit entry tells you if min and max refer to
voltage, current, or are dimensionless (e.g., for digital I/O).

“Could it get easier?” you say. Well, yes. Use the function comedi_to_phys() comedi_to_phys(),
which converts data values to physical units. Call it using something like

volts=comedi_to_phys(it,data,range,maxdata);

and the opposite

data=comedi_from_phys(it,volts,range,maxdata);

3.3. Using the file interface

In addition to providing low level routines for data access, the Comedi library provides higher-level
access, much like the standard C library provides fopen(), etc. as a high-level (and portable) alternative
to the direct UNIX system calls open(), etc. Similarily to fopen(), we have comedi_open():

file=comedi_open("/dev/comedi0");

13

Comedi

where file is of type (comedi_t *). This function calls open(), as done explicitly in a previous
section, but also fills the comedi_t structure with lots of goodies; this information will be useful soon.

Specifically, you need to know maxdata for a specific subdevice/channel. How about:

maxdata=comedi_get_maxdata(file,subdevice,channel);

Wow! How easy. And the range information?

comedi_range * comedi_get_range
(comedi_tcomedi_t *it,unsigned int subdevice,unsigned int chan,unsigned int range);

3.4. Your second Comedi program: simple acquisition

Actually, this is the first Comedi program again, just that we’ve added what we’ve learned.

#include <stdio.h> /* for printf() */
#include <comedilib.h>

int subdev = 0; /* change this to your input subdevice */
int chan = 0; /* change this to your channel */
int range = 0; /* more on this later */
int aref = 0; /* more on this later */

int main(int argc,char *argv[])
{
comedi_t *cf;
int chan=0;
lsampl_t data;
int maxdata,rangetype;
double volts;

cf=comedi_open("/dev/comedi0");

maxdata=comedi_get_maxdata(cf,subdev,chan);

rangetype=comedi_get_rangetype(cf,subdev,chan);

comedi_data_read(cf->fd,subdev,chan,range,aref,&data);

volts=comedi_to_phys(data,rangetype,range,maxdata);

printf("%d %g\n",data,volts);

return 0;
}

14

Comedi

3.5. Your third Comedi program: instructions

This program (taken from the set of demonstration examples that come with Comedi) shows how to use a
somewhat more flexible acquisition function, the so-called instruction.

#include <stdio.h>
#include <comedilib.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <sys/time.h>
#include <unistd.h>
#include "examples.h"

/*
* This example does 3 instructions in one system call. It does

* a gettimeofday() call, then reads N_SAMPLES samples from an

* analog input, and the another gettimeofday() call.

*/

#define MAX_SAMPLES 128

comedi_t *device;

int main(int argc, char *argv[])
{
int ret,i;
comedi_insn insn[3];
comedi_insnlist il;
struct timeval t1,t2;
lsampl_t data[MAX_SAMPLES];

parse_options(argc,argv);

device=comedi_open(filename);
if(!device){
comedi_perror(filename);
exit(0);

}

if(verbose){
printf("measuring device=%s subdevice=%d channel=%d range=%d analog reference=%d\n",
filename,subdevice,channel,range,aref);

}

/* Set up a the "instruction list", which is just a pointer

* to the array of instructions and the number of instructions.

*/
il.n_insns=3;
il.insns=insn;

15

Comedi

/* Instruction 0: perform a gettimeofday() */
insn[0].insn=INSN_GTOD;
insn[0].n=2;
insn[0].data=(void *)&t1;

/* Instruction 1: do 10 analog input reads */
insn[1].insn=INSN_READ;
insn[1].n=n_scan;
insn[1].data=data;
insn[1].subdev=subdevice;
insn[1].chanspec=CR_PACK(channel,range,aref);

/* Instruction 2: perform a gettimeofday() */
insn[2].insn=INSN_GTOD;
insn[2].n=2;
insn[2].data=(void *)&t2;

ret=comedi_do_insnlist(device,&il);
if(ret<0){
comedi_perror(filename);
exit(0);

}

printf("initial time: %ld.%06ld\n",t1.tv_sec,t1.tv_usec);
for(i=0;i<n_scan;i++){
printf("%d\n",data[i]);

}
printf("final time: %ld.%06ld\n",t2.tv_sec,t2.tv_usec);

printf("difference (us): %ld\n",(t2.tv_sec-t1.tv_sec)*1000000+
(t2.tv_usec-t1.tv_usec));

return 0;
}

3.6. Your fourth Comedi program: commands

This example programs an analog output subdevice with Comedi’s most powerful acquisition function,
the asynchronous command, to generate a waveform.

The waveform in this example is a sine wave, but this can be easily changed to make a generic function
generator.

The function generation algorithm is the same as what is typically used in digital function generators. A
32-bit accumulator is incremented by a phase factor, which is the amount (in radians) that the generator
advances each time step. The accumulator is then shifted right by 20 bits, to get a 12 bit offset into a
lookup table. The value in the lookup table at that offset is then put into a buffer for output to the DAC.

16

Comedi

Once you have issued the command, Comedi expects you to keep the buffer full of data to output to the
acquisition card. This is done by write(). Since there may be a delay between the comedi_command()
and a subsequent write(), you should fill the buffer using write() before you call
comedi_command(), as is done here.

#include <stdio.h>
#include <comedilib.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <getopt.h>
#include <ctype.h>
#include <math.h>
#include "examples.h"

double waveform_frequency = 10.0; /* frequency of the sine wave to output */
double amplitude = 4000; /* peak-to-peak amplitude, in DAC units (i.e., 0-4095) */
double offset = 2048; /* offset, in DAC units */

/* This is the size of chunks we deal with when creating and
outputting data. This *could* be 1, but that would be
inefficient */

#define BUF_LEN 4096

int subdevice;
int external_trigger_number = 0;

sampl_t data[BUF_LEN];

void dds_output(sampl_t *buf,int n);
void dds_init(void);

/* This define determines which waveform to use. */
#define dds_init_function dds_init_sine

void dds_init_sine(void);
void dds_init_pseudocycloid(void);
void dds_init_sawtooth(void);

int comedi_internal_trigger(comedi_t *dev, unsigned int subd, unsigned int trignum)
{
comedi_insn insn;
lsampl_t data[1];

memset(&insn, 0, sizeof(comedi_insn));
insn.insn = INSN_INTTRIG;
insn.subdev = subd;
insn.data = data;
insn.n = 1;

data[0] = trignum;

17

Comedi

return comedi_do_insn(dev, &insn);
}

int main(int argc, char *argv[])
{
comedi_cmd cmd;
int err;
int n,m;
int total=0;
comedi_t *dev;
unsigned int chanlist[16];
unsigned int maxdata;
comedi_range *rng;
int ret;
lsampl_t insn_data = 0;

parse_options(argc,argv);

/* Force n_chan to be 1 */
n_chan = 2;

if(value){ waveform_frequency = value; }

dev = comedi_open(filename);
if(dev == NULL){
fprintf(stderr, "error opening %s\n", filename);
return -1;

}
subdevice = comedi_find_subdevice_by_type(dev,COMEDI_SUBD_AO,0);

maxdata = comedi_get_maxdata(dev,subdevice,0);
rng = comedi_get_range(dev,subdevice,0,0);
offset = (double)comedi_from_phys(0.0,rng,maxdata);
amplitude = (double)comedi_from_phys(1.0,rng,maxdata) - offset;

memset(&cmd,0,sizeof(cmd));
/* fill in the command data structure: */
cmd.subdev = subdevice;
cmd.flags = 0;
cmd.start_src = TRIG_INT;
cmd.start_arg = 0;
cmd.scan_begin_src = TRIG_TIMER;
cmd.scan_begin_arg = 1e9/freq;
cmd.convert_src = TRIG_NOW;
cmd.convert_arg = 0;
cmd.scan_end_src = TRIG_COUNT;
cmd.scan_end_arg = n_chan;
cmd.stop_src = TRIG_NONE;
cmd.stop_arg = 0;

cmd.chanlist = chanlist;
cmd.chanlist_len = n_chan;

18

Comedi

chanlist[0] = CR_PACK(channel,range,aref);
chanlist[1] = CR_PACK(channel+1,range,aref);

dds_init();

dds_output(data,BUF_LEN);
dds_output(data,BUF_LEN);

dump_cmd(stdout,&cmd);

if ((err = comedi_command(dev, &cmd)) < 0) {
comedi_perror("comedi_command");
exit(1);

}

m=write(comedi_fileno(dev),data,BUF_LEN*sizeof(sampl_t));
if(m<0){
perror("write");
exit(1);

}
printf("m=%d\n",m);

ret = comedi_internal_trigger(dev, subdevice, 0);
if(ret<0){
perror("comedi_internal_trigger\n");
exit(1);

}

while(1){
dds_output(data,BUF_LEN);
n=BUF_LEN*sizeof(sampl_t);
while(n>0){
m=write(comedi_fileno(dev),(void *)data+(BUF_LEN*sizeof(sampl_t)-n),n);
if(m<0){
perror("write");
exit(0);

}
printf("m=%d\n",m);
n-=m;

}
total+=BUF_LEN;

}

return 0;
}

#define WAVEFORM_SHIFT 16
#define WAVEFORM_LEN (1<<WAVEFORM_SHIFT)
#define WAVEFORM_MASK (WAVEFORM_LEN-1)

sampl_t waveform[WAVEFORM_LEN];

19

Comedi

unsigned int acc;
unsigned int adder;

void dds_init(void)
{
adder=waveform_frequency/freq*(1<<16)*(1<<WAVEFORM_SHIFT);

dds_init_function();
}

void dds_output(sampl_t *buf,int n)
{
int i;
sampl_t *p=buf;

for(i=0;i<n;i++){

*p=waveform[(acc>>16)&WAVEFORM_MASK];

p++;
acc+=adder;
}

}

void dds_init_sine(void)
{
int i;

for(i=0;i<WAVEFORM_LEN;i++){
waveform[i]=rint(offset+0.5*amplitude*cos(i*2*M_PI/WAVEFORM_LEN));

}
}

/* Yes, I know this is not the proper equation for a cycloid. Fix it. */
void dds_init_pseudocycloid(void)
{
int i;
double t;

for(i=0;i<WAVEFORM_LEN/2;i++){
t=2*((double)i)/WAVEFORM_LEN;
waveform[i]=rint(offset+amplitude*sqrt(1-4*t*t));
}
for(i=WAVEFORM_LEN/2;i<WAVEFORM_LEN;i++){
t=2*(1-((double)i)/WAVEFORM_LEN);
waveform[i]=rint(offset+amplitude*sqrt(1-t*t));
}

}

20

Comedi

void dds_init_sawtooth(void)
{
int i;

for(i=0;i<WAVEFORM_LEN;i++){
waveform[i]=rint(offset+amplitude*((double)i)/WAVEFORM_LEN);

}
}

4. Acquisition and configuration functions

This Section gives an overview of all Comedi functions with which application programmers can
implement their data acquisition. (With “acquisition” we mean all possible kinds of interfacing with the
cards: input, output, configuration, streaming, etc.) Section 7 explains the function calls in full detail.

4.1. Functions for single acquisition

The simplest form of using Comedi is to get one single sample to or from an interface card. This sections
explains how to do such simple digital and analog acquisitions.

4.1.1. Single digital acquisition

Many boards supported by Comedi have digital input and output channels; i.e., channels that can only
produce a 0 or a 1. Some boards allow the direction (input or output) of each channel to be specified
independently in software.

Comedi groups digital channels into a subdevice, which is a group of digital channels that have the same
characteristics. For example, digital output lines will be grouped into a digital output subdevice,
bidirectional digital lines will be grouped into a digital I/O subdevice. Thus, there can be multiple digital
subdevices on a particular board.

Individual bits on a digital I/O device can be read and written using the functions

int comedi_dio_read(device,subdevice,channel,unsigned int *bit);
int comedi_dio_write(device,subdevice,channel,unsigned int bit);

21

Comedi

The device parameter is a pointer to a successfully opened Comedi device. The subdevice and
channel parameters are positive integers that indicate which subdevice and channel is used in the
acquisition. The integer bit contains the value of the acquired bit.

The direction of bidirectional lines can be configured using the function

comedi_dio_config(device,subdevice,channel,unsigned int dir);

The parameter dir should be either COMEDI_INPUT or COMEDI_OUTPUT. Many digital I/O subdevices
group channels into blocks for configuring direction. Changing one channel in a block changes the entire
block.

Multiple channels can be read and written simultaneously using the function

comedi_dio_bitfield(device,subdevice,unsigned int write_mask,unsigned int *bits);

Each channel is assigned to a bit in the write_mask and bits bitfield. If a bit in write_mask is set,
the corresponding bit in *bits will be written to the corresponding digital output line. Each digital line
is then read and placed into *bits. The value of bits in *bits corresponding to digital output lines is
undefined and device-specific. Channel 0 is the least significant bit in the bitfield; channel 31 is the most
significant bit. Channels higher than 31 cannot be accessed using this method.

The digital acquisition functions seem to be very simple, but, behind the implementation screens of the
Comedi kernel module, they are executed as special cases of the general instruction command.

4.1.2. Single analog acquisition

Analog Comedi channels can produce data values that are samples from continuous analog signals.
These samples are integers with a significant content in the range of, typically, 8, 10, 12, or 16 bits.

The

int comedi_data_read(comedi_t * device, unsigned int subdevice, unsigned int channel,
unsigned int range, unsigned int aref, lsampl_t * data);

function reads one such data value from a Comedi channel, and puts it in the user-specified data buffer.
The

int comedi_data_write(comedi_t * device, unsigned int subdevice, unsigned int channel,
unsigned int range, unsigned int aref, lsampl_t data);

works in the opposite direction. Data values returned by this function are unsigned integers less than, or
equal to, the maximum sample value of the channel, which can be determined using the function

lsampl_t comedi_get_maxdata(comedi_t * device, unsigned int subdevice, unsigned int channel);

Conversion of data values to physical units can be performed by the function

22

Comedi

double comedi_to_phys(lsampl_t data, comedi_range * range, lsampl_t maxdata);

There are two data structures in these commands that are not fully self-explanatory:

• comedi_t: this data structure contains all information that a user program has to know about an open
Comedi device. The programmer doesn’t have to fill in this data structure manually: it gets filled in by
opening the device.

• lsampl_t: this “data structure” represents one single sample. On most architectures, it’s nothing more
than a 32 bits value. Internally, Comedi does some conversion from raw sample data to “correct”
integers. This is called “data munging”.

Each single acquisition by, for example, comedi_data_read() requires quite some overhead,
because all the arguments of the function call are checked. If multiple acquisitions must be done on the
same channel, this overhead can be avoided by using a function that can read more than one sample:

int comedi_data_read_n(comedi_t *it, unsigned int subdev, unsigned int chan, unsigned int range,
unsigned int aref, lsampl_t *data, unsigned int n)

The number of samples, n, is limited by the Comedi implementation (to a maximum of 100 samples),
because the call is blocking.

The start of the data acquisition can also be delayed by a specified number of nano-seconds:

int comedi_data_read_delayed(comedi_t *it, unsigned int subdev, unsigned int chan, unsigned int range,
unsigned int aref, lsampl_t *data, unsigned int nano_sec)

All these read and write acquisition functions are implemented on top of the generic instruction
command.

4.2. Instructions for multiple acquisitions

The instruction is one of the most generic, overloaden and flexible functions in the Comedi API. It is
used to execute a multiple of identical acquisitions on the same channel, but also to perform a
configuration of a channel. An instruction list is a list of instructions, possibly on different channels.
Both instructions and instructions lists are executed synchronously, i.e., while blocking the calling
process. This is one of the limitations of instructions; the other one is that they cannot code an acquisition
involving timers or external events. These limits are eliminated by the command acquisition primitive.

23

Comedi

4.2.1. The instruction data structure

All the information needed to execute an instruction is stored in the comedi_insn data structure:

struct comedi_insn_struct{
unsigned int insn; // integer encoding the type of acquisition

// (or configuration)
unsigned int n; // number of elements in data array
lsampl_t *data; // pointer to data buffer
unsigned int subdev; // subdevice
unsigned int chanspec; // encoded channel specification
unsigned int unused[3];

} comedi_insn;

Because of the large flexibility of the instruction function, many types of instruction do not need to fill in
all fields, or attach different meanings to the same field. But the current implementation of Comedi
requires the data field to be at least one byte long.

The insn flag of the instruction data structure determines the type of acquisition executed in the
corresponding instruction:

• INSN_READ: the instruction executes a read on an analog channel.

• INSN_WRITE: the instruction executes a write on an analog channel.

• INSN_BITS: indicates that the instruction must read or write values on multiple digital I/O channels.

• INSN_GTOD: the instruction performs a “Get Time Of Day” acquisition.

• INSN_WAIT: the instruction blocks for a specified number of nanoseconds.

4.2.2. Instruction execution

Once an instruction data structure has been filled in, the corresponding instruction is executed as follows:

int comedi_do_insn(comedi_t *it, comedi_insn * instruction);

Many Comedi instructions are shortcuts that relieve the programmer from explicitly filling in the data
structure and calling the comedi_do_insn function.

The

int comedi_do_insnlistcomedi_t *it, comedi_insnlist * list)

instruction allows to perform a list of instructions in one function call. The number of instructions in the
list is limited in the implementation, because instructions are executed synchronously, i.e., the call blocks
until the whole instruction (list) has finished.

24

Comedi

4.3. Instructions for configuration

Section 4.2 explains how instructions are used to do acquisition on channels. This section explains how
they are used to configure a subdevice. There are various sorts of configurations, and the specific
information for each different configuration possibility is to be specified via the data buffer of the
instruction data structure. (So, the pointer to a lsampl_t is misused as a pointer to an array with
board-specific information.)

Using INSN_CONFIG as the insn flag in an instruction data structure indicates that the instruction will
not perform acquisition on a channel, but will configure that channel. The chanspec field in the
comedi_insn data structure, contains the channel to be configured. The zeroth element of the data array is
always an id that specifies what type of configuration instruction is being performed. The meaning of rest
of the elements in the data array depend on the configuration instruction id. Some of the possible ids are
summarised in the table below, along with the meanings of the data array elements for each type of
configuration instruction.

data[0] Description n (number of
elements in data
array)

Meanings of data[1],
..., data[n-1]

INSN_CONFIG_DIO_INPUTConfigure a dio line as
input. It is easier to use
comedi_dio_config()
than to use this
configuration instruction
directly.

1 n/a

INSN_CONFIG_DIO_OUTPUTConfigure a dio line as
output. It is easier to use
comedi_dio_config()
than to use this
configuration instruction
directly.

1 n/a

25

Comedi

data[0] Description n (number of
elements in data
array)

Meanings of data[1],
..., data[n-1]

INSN_CONFIG_ALT_SOURCESelect an alternate input
source. This instruction
is used by
comedi_calibrate to
configure analog input
channels which can be
redirected to read
internal calibration
references. You need to
set the
CR_ALT_SOURCE flag
in the chanspec when
reading to actually read
from the configured
alternate input source. If
you are using
comedi_data_read(),
then the channel
parameter can be
bitwise or’d with the
CR_ALT_SOURCE
flag.

2 data[1]: alternate input
source.

INSN_CONFIG_BLOCK_SIZESpecify block size for
asynchonous command
data. When performing
streaming input, many
boards accumulate
samples in internal fifos
and transfer them to the
host computer in
chunks. Some drivers let
you suggest a size in
bytes for how big a the
chunks should be. This
lets you tune how often
the host computer is
interrupted with a new
chunk of data.

2 data[1]: The desired
block size in bytes. The
actual configured block
size is writen back to
data[1] after the
instruction completes.
This instruction acts
purely as a query if the
block size is set to zero.

26

Comedi

data[0] Description n (number of
elements in data
array)

Meanings of data[1],
..., data[n-1]

INSN_CONFIG_DIO_QUERYQueries the
configuration of a dio
line to see if it is an
input or output. It is
probably easier to use
the comedilib function
comedi_dio_get_config()
than to use this
instruction directly.

2 data[1]: The instruction
sets this element to
either
COMEDI_INPUT or
COMEDI_OUTPUT.

See the comedilib demo program demo/choose_clock.c for an example of using a configuration
instruction.

4.4. Instruction for internal triggering

This special instruction has INSN_INTTRIG as the insn flag in its instruction data structure. Its
execution causes an internal triggering event. This event can, for example, cause the device driver to start
a conversion, or to stop an ongoing acquisition. The exact meaning of the triggering depends on the card
and its particular driver.

The data[0] field of the INSN_INTTRIG instruction is reserved for future use, and should be set to “0”.

4.5. Commands for streaming acquisition

The most powerful Comedi acquisition primitive is the command. It’s powerful because, with one single
command, the programmer launches:

• a possibly infinite sequence of acquisitions,

• accompanied with various callback functionalities (DMA, interrupts, driver-specific callback
functions),

• for any number of channels,

• with an arbitrary order of channels in each scan (possibly even with repeated channels per scan),

• and with various scan triggering sources, external (i.e., hardware pulses) as well as internal (i.e.,
pulses generated on the DAQ card itself, or generated by a software trigger instruction).

This command functionality exists in the Comedi API, because various data acquisition devices have the
capability to perform this kind of complex acquisition, driven by either on-board or off-board timers and
triggers.

27

Comedi

A command specifies a particular data acquisition sequence, which consists of a number of scans, and
each scan is comprised of a number of conversions, which usually corresponds to a single A/D or D/A
conversion. So, for example, a scan could consist of sampling channels 1, 2 and 3 of a particular device,
and this scan should be repeated 1000 times, at intervals of 1 millisecond apart.

The command function is complementary to the configuration instruction function: each channel in the
command’s chanlist should first be configured by an appropriate instruction.

4.5.1. Executing a command

A commands is executed by the following Comedi function:

int comedi_command(comedi_t * device, comedi_cmd * command);

The following sections explain the meaning of the comedi_cmd data structure. Filling in this structure
can be quite complicated, and requires good knowledge about the exact functionalities of the DAQ card.
So, before launching a command, the application programmer is adviced to check whether this complex
command data structure can be successfully parsed. So, the typical sequence for executing a command is
to first send the command through comedi_command_test() once or twice. The test will check that the
command is valid for the particular device, and often makes some adjustments to the command
arguments, which can then be read back by the user to see the actual values used.

A Comedi program can find out on-line what the command capabilities of a specific device are, by
means of the comedi_get_cmd_src_mask() function.

4.5.2. The command data structure

The command executes according to the information about the requested acquisition, which is stored in
the comedi_cmd data structure:

typedef struct comedi_cmd_struct comedi_cmd;

struct comedi_cmd_struct{
unsigned int subdev; // which subdevice to sample
unsigned int flags; // encode some configuration possibilities

// of the command execution; e.g.,
// whether a callback routine is to be
// called at the end of the command

unsigned int start_src; // event to make the acquisition start
unsigned int start_arg; // parameters that influence this start

unsigned int scan_begin_src; // event to make a particular scan start
unsigned int scan_begin_arg; // parameters that influence this start‘

unsigned int convert_src; // event to make a particular conversion start
unsigned int convert_arg; // parameters that influence this start

28

Comedi

unsigned int scan_end_src; // event to make a particular scan terminate
unsigned int scan_end_arg; // parameters that influence this termination

unsigned int stop_src; // what make the acquisition terminate
unsigned int stop_arg; // parameters that influence this termination

unsigned int *chanlist; // pointer to list of channels to be sampled
unsigned int chanlist_len; // number of channels to be sampled

sampl_t *data; // address of buffer
unsigned int data_len; // number of samples to acquire

};

The start and end of the whole command acquisition sequence, and the start and end of each scan and of
each conversion, is triggered by a so-called event. More on these in Section 4.5.3.

The subdev member of the comedi_cmd structure is the index of the subdevice the command is
intended for. The comedi_find_subdevice_by_type() function can be useful in discovering the index of
your desired subdevice.

The chanlist member of the comedi_cmd data structure should point to an array whose number of
elements is specificed by chanlist_len (this will generally be the same as the scan_end_arg). The chanlist
specifies the sequence of channels and gains (and analog references) that should be stepped through for
each scan. The elements of the chanlist array should be initialized by “packing” the channel, range and
reference information together with the CR_PACK() macro.

The data and data_len members can be safely ignored when issueing commands from a user-space
program. They only have meaning when a command is sent from a kernel module using the
kcomedilib interface, in which case they specify the buffer where the driver should write/read its data
to/from.

The final member of the comedi_cmd structure is the flags field, i.e., bits in a word that can be
bitwise-or’d together. The meaning of these bits are explained in a later section.

4.5.3. The command trigger events

A command is a very versatile acquisition instruction, in the sense that it offers lots of possibilities to let
different hardware and software sources determine when acquisitions are started, performed, and
stopped. More specifically, the command data structure has five types of events: start the acquisition, start
a scan, start a conversion, stop a scan, and stop the acquisition. Each event can be given its own source
(the *_src members in the comedi_cmd data structure). And each event source can have a
corresponding argument (the *_arg members of the comedi_cmd data structure) whose meaning
depends on the type of source trigger. For example, to specify an external digital line “3” as a source (in
general, any of the five event sources), you would use src=TRIG_EXT and arg=3.

29

Comedi

The following paragraphs discuss in somewhat more detail the trigger event sources(*_src), and the
corresponding arguments (*_arg).

The start of an acquisition is controlled by the start_src events. The available options are:

• TRIG_NOW: the start_src event occurs start_arg nanoseconds after the comedi_cmd is called.
Currently, only start_arg=0 is supported.

• TRIG_FOLLOW: (For an output device.) The start_src event occurs when data is written to the buffer.

• TRIG_EXT: the start event occurs when an external trigger signal occurs; e.g., a rising edge of a
digital line. start_arg chooses the particular digital line.

• TRIG_INT: the start event occurs on a Comedi internal signal, which is typically caused by an
INSN_INTTRIG instruction.

The start of the beginning of each scan is controlled by the scan_begin events. The available options are:

• TRIG_TIMER: scan_begin events occur periodically. The time between scan_begin events is
convert_arg nanoseconds.

• TRIG_FOLLOW: The scan_begin event occurs immediately after a scan_end event occurs.

• TRIG_EXT: the scan_begin event occurs when an external trigger signal occurs; e.g., a rising edge of
a digital line. scan_begin_arg chooses the particular digital line.

The scan_begin_arg used here may not be supported exactly by the device, but it will be adjusted to the
nearest supported value by comedi_command_test().

The timing between each sample in a scan is controlled by the convert_* fields:

• TRIG_TIMER: the conversion events occur periodically. The time between convert events is
convert_arg nanoseconds.

• TRIG_EXT: the conversion events occur when an external trigger signal occurs, e.g., a rising edge of
a digital line. convert_arg chooses the particular digital line.

• TRIG_NOW: All conversion events in a scan occur simultaneously.

The end of each scan is almost always specified using TRIG_COUNT, with the argument being the same
as the number of channels in the chanlist. You could probably find a device that allows something else,
but it would be strange.

The end of an acquisition is controlled by stop_src and stop_arg:

• TRIG_COUNT: stop the acquisition after stop_arg scans.

• TRIG_NONE: perform continuous acquisition, until stopped using comedi_cancel().

Its argument is reserved and should be set to 0. (“Reserved” means that unspecified things could
happen if it is set to something else but 0.)

There are a couple of less usual or not yet implemented events:

30

Comedi

• TRIG_TIME: cause an event to occur at a particular time.

(This event source is reserved for future use.)

• TRIG_OTHER: driver specific event trigger.

This event can be useful as any of the trigger sources. Its exact meaning is driver specific, because it
implements a feature that otherwise does not fit into the generic Comedi command interface.
Configuration of TRIG_OTHER features are done by INSN_CONFIG instructions.

The argument is reserved and should be set to 0.

Not all event sources are applicable to all events. Supported trigger sources for specific events depend
significantly on your particular device, and even more on the current state of its device driver. The
comedi_get_cmd_src_mask() function is useful for determining what trigger sources a subdevice
supports.

4.5.4. The command flags

The flags field in the command data structure is used to specify some “behaviour” of the acquisitions in a
command. The meaning of the field is as follows:

• TRIG_RT: ask the driver to use a hard real-time interrupt handler. This will reduce latency in
handling interrupts from your data aquisition hardware. It can be useful if you are sampling at high
frequency, or if your hardware has a small onboard data buffer. You must have a real-time kernel
(RTAI (http://www.rtai.org) or RTLinux/GPL (http://www.rtlinux-gpl.org/)) and must compile Comedi
with real-time support, or this flag will do nothing.

• TRIG_WAKE_EOS: where “EOS” stands for “End of Scan”. Some drivers will change their
behaviour when this flag is set, trying to transfer data at the end of every scan (instead of, for example,
passing data in chunks whenever the board’s hardware data buffer is half full). This flag may degrade a
driver’s performance at high frequencies, because the end of a scan is, in general, a much more
frequent event than the filling up of the data buffer.

• TRIG_ROUND_NEAREST: round to nearest supported timing period, the default. This flag (as well
as the following three), indicates how timing arguments should be rounded if the hardware cannot
achieve the exact timing requested.

• TRIG_ROUND_DOWN: round period down.

• TRIG_ROUND_UP: round period up.

• TRIG_ROUND_UP_NEXT: this one doesn’t do anything, and I don’t know what it was intended to
do...?

• TRIG_DITHER: enable dithering? Dithering is a software technique to smooth the influence of
discretization “noise”.

31

Comedi

• TRIG_DEGLITCH: enable deglitching? Another “noise” smoothing technique.

• TRIG_WRITE: write to bidirectional devices. Could be useful, in principle, if someone wrote a driver
that supported commands for a digital I/O device that could do either input or output.

• TRIG_BOGUS: do the motions?

• TRIG_CONFIG: perform configuration, not triggering. This is a legacy of the deprecated
comedi_trig_struct data structure, and has no function at present.

4.5.5. Anti-aliasing

If you wish to aquire accurate waveforms, it is vital that you use an anti-alias filter. An anti-alias filter is
a low-pass filter used to remove all frequencies higher than the Nyquist frequency (half your sampling
rate) from your analog input signal before you convert it to digital. If you fail to filter your input signal,
any high frequency components in the original analog signal will create artifacts in your recorded digital
waveform that cannot be corrected.

For example, suppose you are sampling an analog input channel at a rate of 1000 Hz. If you were to
apply a 900 Hz sine wave to the input, you would find that your sampling rate is not high enough to
faithfully record the 900 Hz input, since it is above your Nyquist frequency of 500 Hz. Instead, what you
will see in your recorded digital waveform is a 100 Hz sine wave! If you don’t use an anti-alias filter, it is
impossible to tell whether the 100 Hz sine wave you see in your digital signal was really produced by a
100 Hz input signal, or a 900 Hz signal aliased to 100 Hz, or a 1100 Hz signal, etc.

In practice, the cutoff frequency for the anti-alias filter is usually set 10% to 20% below the Nyquist
frequency due to fact that real filters do not have infinitely sharp cutoffs.

4.6. Slowly-varying inputs

Sometimes, your input channels change slowly enough that you are able to average many successive
input values to get a more accurate measurement of the actual value. In general, the more samples you
average, the better your estimate gets, roughly by a factor of sqrt(number_of_samples). Obviously, there
are limitations to this:

• you are ultimately limited by “Spurious Free Dynamic Range”. This SFDR is one of the popular
measures to quantify how much noise a signal carries. If you take a Fourier transform of your signal,
you will see several “peaks” in the transform: one or more of the fundamental harmonics of the
measured signal, and lots of little “peaks” (called “spurs”) caused by noise. The SFDR is then the
difference between the amplitude of the fundamental harmonic and of the largest spur (at frequencies
below half of the Nyquist frequency of the DAQ sampler!).

• you need to have some noise on the input channel, otherwise you will be averaging the same number N
times. (Of course, this only holds if the noise is large enough to cause at least a one-bit discretization.)

32

Comedi

• the more noise you have, the greater your SFDR, but it takes many more samples to compensate for
the increased noise.

• if you feel the need to average samples for, for example, two seconds, your signal will need to be very
slowly-varying, i.e., not varying more than your target uncertainty for the entire two seconds.

As you might have guessed, the Comedi library has functions to help you in your quest to accurately
measure slowly varying inputs:

int comedi_sv_init(comedi_sv_t * sv, comedi_t * device, unsigned int subdevice, unsigned int channel);

This function initializes the comedi_sv_t data structure, used to do the averaging acquisition:

struct comedi_sv_struct{
comedi_t *dev;
unsigned int subdevice;
unsigned int chan;

/* range policy */
int range;
int aref;

/* number of measurements to average (for analog inputs) */
int n;

lsampl_t maxdata;
};

The actual acquisition is done with:

int comedi_sv_measure(comedi_sv_t * sv, double * data);

The number of samples over which the comedi_sv_measure() averages is limited by the
implementation (currently the limit is 100 samples).

One typical use for this function is the measurement of thermocouple voltages. And the Comedi
self-calibration utility also uses these functions. On some hardware, it is possible to tell it to measure an
internal stable voltage reference, which is typically going to be very slowly varying; on the kilosecond
time scale or more. So, it is reasonable to measure millions of samples, to get a very accurate
measurement of the A/D converter output value that corresponds to the voltage reference. Sometimes,
however, this is overkill, since there is no need to perform a part-per-million calibration to a standard that
is only accurate to a part-per-thousand.

4.7. Experimental functionality

The following subsections document functionality that has not yet matured. Most of this functionality
has even not been implemented yet in any single device driver. This information is included here, in
order to stimulate discussion about their API, and to encourage pioneering implementations.

33

Comedi

4.7.1. Digital input combining machines

(Status: experimental (i.e., no driver implements this yet))

When one or several digital inputs are used to modify an output value, either an accumulator or a single
digital line or bit, a bitfield structure is typically used in the Comedi interface. The digital inputs have
two properties, “sensitive” inputs and “modifier” inputs. Edge transitions on sensitive inputs cause
changes in the output signal, whereas modifier inputs change the effect of edge transitions on sensitive
inputs. Note that inputs can be both modifier inputs and sensitive inputs.

For simplification purposes, it is assumed that multiple digital inputs do not change simultaneously.

The combined state of the modifier inputs determine a modifier state. For each combination of modifier
state and sensitive input, there is a set of bits that determine the effect on the output value due to positive
or negative transitions of the sensitive input. For each transition direction, there are two bits defined as
follows:

00: transition is ignored.
01: accumulator is incremented, or output is set.
10: accumulator is decremented, or output is cleared.
11: reserved.

For example, a simple digital follower is specified by the bit pattern 01 10, because it sets the output on
positive transitions of the input, and clears the output on negative transitions. A digital inverter is
similarily 10 01. These systems have only one sensitive input.

As another example, a simple up counter, which increments on positive transitions of one input, is
specified by 01 00. This system has only one sensitive input.

When multiple digital inputs are used, the inputs are divided into two types, inputs which cause changes
in the accumulator, and those that only modify the meaning of transitions on other inputs. Modifier
inputs do not require bitfields, but there needs to be a bitfield of length 4*(2^(N-1)) for each edge
sensitive input, where N is the total number of inputs. Since N is usually 2 or 3, with only one edge
sensitive input, the scaling issues are not significant.

4.7.2. Analog filtering configuration

(Status: design (i.e., no driver implements this yet).)

The insn field of the instruction data structure has not been assigned yet.

The chanspec field of the instruction data structure is ignored.

34

Comedi

Some devices have the capability to add white noise (dithering) to analog input measurement. This
additional noise can then be averaged out, to get a more accurate measurement of the input signal. It
should not be assumed that channels can be separately configured. A simple design can use 1 bit to turn
this feature on/off.

Some devices have the capability of changing the glitch characteristics of analog output subsytems. The
default (off) case should be where the average settling time is lowest. A simple design can use 1 bit to
turn this feature on/off.

Some devices have a configurable analog filters as part of the analog input stage. A simple design can use
1 bit to enable/disable the filter. Default is disabled, i.e., the filter being bypassed, or if the choice is
between two filters, the filter with the largest bandwidth.

4.7.3. Analog Output Waveform Generation

(Status: design (i.e., no driver implements this yet).)

The insn field of the instruction data structure has not been assigned yet.

The chanspec field of the instruction data structure is ignored.

Some devices have the ability to cyclicly loop through samples kept in an on-board analog output FIFO.
This config should allow the user to enable/disable this mode.

This config should allow the user to configure the number of samples to loop through. It may be
necessary to configure the channels used.

4.7.4. Extended Triggering

(Status: alpha.)

The insn field of the instruction data structure has not been assigned yet.

The chanspec field of the instruction data structure is ignored.

This section covers common information for all extended triggering configuration, and doesn’t describe a
particular type of extended trigger.

Extended triggering is used to configure triggering engines that do not fit into commands. In a typical
programming sequence, the application will use configuration instructions to configure an extended

35

Comedi

trigger, and a command, specifying TRIG_OTHER as one of the trigger sources.

Extended trigger configuration should be designed in such a way that the user can probe for valid
parameters, similar to how command testing works. An extended trigger configuration instruction should
not configure the hardware directly, rather, the configuration should be saved until the subsequent
command is issued. This allows more flexibility for future interface changes.

It has not been decided whether the configuration stage should return a token that is then used as the
trigger argument in the command. Using tokens is one method to satisfy the problem that extended
trigger configurations may have subtle compatiblity issues with other trigger sources/arguments that can
only be determined at command test time. Passing all stages of a command test should only be allowed
with a properly configured extended trigger.

Extended triggers must use data[1] as flags. The upper 16 bits are reserved and used only for flags that
are common to all extended triggers. The lower 16 bits may be defined by the particular type of extended
trigger.

Various types of extended triggers must use data[1] to know which event the extended trigger will be
assigned to in the command structure. The possible values are an OR’d mask of the following:

• COMEDI_EV_START

• COMEDI_EV_SCAN_BEGIN

• COMEDI_EV_CONVERT

• COMEDI_EV_SCAN_END

• COMEDI_EV_STOP

4.7.5. Analog Triggering

(Status: alpha. The ni_mio_common.c driver implements this feature.)

The insn field of the instruction data structure has not been assigned yet.

The chanspec field of the instruction data structure is ignored.

The data field of the instruction data structure is used as follows:

data[1]: trigger and combining machine configuration.
data[2]: analog triggering signal chanspec.
data[3]: primary analog level.
data[4]: secondary analog level.

36

Comedi

Analog triggering is described by a digital combining machine that has two sensitive digital inputs. The
sensitive digital inputs are generated by configurable analog comparators. The analog comparators
generate a digital 1 when the analog triggering signal is greater than the comparator level. The digital
inputs are not modifier inputs. Note, however, there is an effective modifier due to the restriction that the
primary analog comparator level must be less than the secondary analog comparator level.

If only one analog comparator signal is used, the combining machine for the secondary input should be
set to ignored, and the secondary analog level should be set to 0.

The interpretation of the chanspec and voltage levels is device dependent, but should correspond to
similar values of the analog input subdevice, if possible.

Notes: Reading range information is not addressed. This makes it difficult to convert comparator voltages
to data values.

Possible extensions: A parameter that specifies the necessary time that the set condition has to be true
before the trigger is generated. A parameter that specifies the necessary time that the reset condition has
to be true before the state machine is reset.

4.7.6. Bitfield Pattern Matching Extended Trigger

(Status: design. No driver implements this feature yet.)

The insn field of the instruction data structure has not been assigned yet.

The chanspec field of the instruction data structure is ignored.

The data field of the instruction data structure is used as follows:

data[1]: trigger flags.
data[2]: mask.
data[3]: pattern.

The pattern matching trigger issues a trigger when all of a specifed set of input lines match a specified
pattern. If the device allows, the input lines should correspond to the input lines of a digital input
subdevice, however, this will necessarily be device dependent. Each possible digital line that can be
matched is assigned a bit in the mask and pattern. A bit set in the mask indicates that the input line must
match the corresponding bit in the pattern. A bit cleared in the mask indicates that the input line is
ignored.

Notes: This only allows 32 bits in the pattern/mask, which may be too few. Devices may support
selecting different sets of lines from which to match a pattern.

37

Comedi

Discovery: The number of bits can be discovered by setting the mask to all 1’s. The driver must modify
this value and return -EAGAIN.

4.7.7. Counter configuration

(Status: design. No driver implements this feature yet.)

The insn field of the instruction data structure has not been assigned yet.

The chanspec field of the instruction data structure is used to specify which counter to use. (I.e., the
counter is a Comedi channel.)

The data field of the instruction data structure is used as follows:

data[1]: trigger configuration.
data[2]: primary input chanspec.
data[3]: primary combining machine configuration.
data[4]: secondary input chanspec.
data[5]: secondary combining machine configuration.
data[6]: latch configuration.

Note that this configuration is only useful if the counting has to be done in software. Many cards offer
configurable counters in hardware; e.g., general purpose timer cards can be configured to act as pulse
generators, frequency counters, timers, encoders, etc.

Counters can be operated either in synchronous mode (using INSN_READ) or asynchronous mode
(using commands), similar to analog input subdevices. The input signal for both modes is the
accumulator. Commands on counter subdevices are almost always specified using scan_begin_src =
TRIG_OTHER, with the counter configuration also serving as the extended configuration for the scan
begin source.

Counters are made up of an accumulator and a combining machine that determines when the
accumulator should be incremented or decremented based on the values of the input signals. The
combining machine optionally determines when the accumulator should be latched and put into a buffer.
This feature is used in asynchronous mode.

Note: How to access multiple pieces of data acquired at each event?

4.7.8. One source plus auxiliary counter configuration

(Status: design. No driver implements this feature yet.)

38

Comedi

The insn field of the instruction data structure has not been assigned yet.

The chanspec field of the instruction data structure is used to ...

The data field of the instruction data structure is used as follows:

data[1]: is flags, including the flags for the command triggering configuration. If a command is not subsequently issued on the subdevice, the command triggering portion of the flags are ignored.
data[2]: determines the mode of operation. The mode of operation is actually a bitfield that encodes what to do for various transitions of the source signals.
data[3], data[4]: determine the primary source for the counter, similar to the _src and the _arg fields used in the command data structure.

Notes: How to specify which events cause a latch and push, and what should get latched?

4.7.9. National instruments RTSI trigger bus

A number of NI boards support the RTSI (Real Time System Integration) bus. It’s primary use is to
synchronize multiple DAQ cards. On PXI boards, the RTSI lines correspond to the PXI trigger lines 0 to
7. PCI boards use cables to connect to their RTSI ports. The RTSI bus consists of 8 digital signal lines
numbered 0 to 7 that are bi-directional. Each of these signal lines can be configured as an input or output,
and the signal appearing on the output of each line can be configured to one of several internal board
timing signals (although on older boards RTSI line 7 can only be used for the clock signal). The
ni_pcimio, ni_atmio, and ni_mio_cs drivers expose the RTSI bus as a digital I/O subdevice (subdevice
number 10).

The functions comedi_dio_config() and comedi_dio_get_config() can be used on the RTSI subdevice to
set/query the direction (input or output) of each of the RTSI lines individually.

The subdevice also supports the INSN_CONFIG_SET_CLOCK_SRC and
INSN_CONFIG_GET_CLOCK_SRC configuration instructions, which can be used to configure/query
what source the board uses to synchronize its master clock to. The various possibilities are defined in the
comedi.h header file:

Clock Source Description
NI_MIO_INTERNAL_CLOCK Use the board’s internal oscillator.

NI_MIO_RTSI_CLOCK Use the RTSI line 7 as the master clock. This
source is only supported on pre-m-series boards.
The newer m-series boards use
NI_MIO_PLL_RTSI_CLOCK() instead.

NI_MIO_PLL_PXI_STAR_TRIGGER_CLOCK Only available for newer m-series PXI boards.
Synchronizes the board’s phased-locked loop
(which runs at 80MHz) to the PXI star trigger line.

39

Comedi

Clock Source Description
NI_MIO_PLL_PXI10_CLOCK Only available for newer m-series PXI boards.

Synchronizes the board’s phased-locked loop
(which runs at 80MHz) to the 10 MHz PXI
backplane clock.

unsigned NI_MIO_PLL_RTSI_CLOCK(unsigned n)Only available for newer m-series boards. The
function returns a clock source which will cause
the board’s phased-locked loop (which runs at
80MHz) to syncronize to the RTSI line specified in
the function argument.

For all clock sources except NI_MIO_INTERNAL_CLOCK and NI_MIO_PLL_PXI10_CLOCK, you
should pass the period of the clock your are feeding to the board when using
INSN_CONFIG_SET_CLOCK_SRC.

Finally, the configuration instructions INSN_CONFIG_SET_ROUTING and
INSN_CONFIG_GET_ROUTING can be used to select/query which internal signal will appear on a
given RTSI output line. The header file comedi.h defines the following signal sources which can be
routed to an RTSI line:

Signal Source Description
NI_RTSI_OUTPUT_ADR_START1 ADR_START1, an analog input start signal. See

the NI’s DAQ-STC Technical Reference Manual
for more information.

NI_RTSI_OUTPUT_ADR_START2 ADR_START2, an analog input stop signal. See
the NI’s DAQ-STC Technical Reference Manual
for more information.

NI_RTSI_OUTPUT_SCLKG SCLKG, a sample clock signal. See the NI’s
DAQ-STC Technical Reference Manual for more
information.

NI_RTSI_OUTPUT_DACUPDN DACUPDN, a dac update signal. See the NI’s
DAQ-STC Technical Reference Manual for more
information.

NI_RTSI_OUTPUT_DA_START1 DA_START1, an analog output start signal. See
the NI’s DAQ-STC Technical Reference Manual
for more information.

NI_RTSI_OUTPUT_G_SRC0 G_SRC0, the source signal to general purpose
counter 0. See the NI’s DAQ-STC Technical
Reference Manual for more information.

NI_RTSI_OUTPUT_G_GATE0 G_GATE0, the gate signal to general purpose
counter 0. See the NI’s DAQ-STC Technical
Reference Manual for more information.

NI_RTSI_OUTPUT_RGOUT0 RGOUT0, the output signal of general purpose
counter 0. See the NI’s DAQ-STC Technical
Reference Manual for more information.

40

Comedi

Signal Source Description
unsigned NI_RTSI_OUTPUT_RTSI_BRD(unsigned n)RTSI_BRD0 though RTSI_BRD3 are four internal

signals which can have various other signals routed
to them in turn. Currently, comedi provides no way
to configure the signals routed to the RTSI_BRD
lines. See the NI’s DAQ-STC Technical Reference
Manual for more information.

NI_RTSI_OUTPUT_RTSI_OSC The RTSI clock signal. On pre-m-series boards,
this signal is always routed to RTSI line 7, and
cannot be routed to lines 0 through 6. On m-series
boards, any RTSI line can be configured to output
the clock signal.

The RTSI bus pins may be used as trigger inputs for many of the COMEDI trigger functions. To use the
RTSI bus pins, set the source to be TRIG_EXT and the source argument using the return values from the
NI_EXT_RTSI() function (or similarly the NI_EXT_PFI() function if you want to trigger from a PFI
line). The CR_EDGE and CR_INVERT flags may also be set on the trigger source argument to specify
edge and falling edge/low level triggering.

An example to set up a device as a master is given below.

void comediEnableMaster(comedi_t* dev){
comedi_insn configCmd;
lsampl_t configData[2];
int ret;
unsigned int d = 0;
static const unsigned rtsi_subdev = 10;
static const unsigned rtsi_clock_line = 7;

/* Route RTSI clock to line 7 (not needed on pre-m-series boards since their
clock is always on line 7). */
memset(&configCmd, 0, sizeof(configCmd));
memset(&configData, 0, sizeof(configData));
configCmd.insn = INSN_CONFIG;
configCmd.subdev = rtsi_subdev;
configCmd.chanspec = rtsi_clock_line;
configCmd.n = 2;
configCmd.data = configData;
configCmd.data[0] = INSN_CONFIG_SET_ROUTING;
configCmd.data[1] = NI_RTSI_OUTPUT_RTSI_OSC;
ret = comedi_do_insn(dev, &configCmd);
if(ret < 0){
comedi_perror("comedi_do_insn: INSN_CONFIG");
exit(1);
}
// Set clock RTSI line as output
ret = comedi_dio_config(dev, rtsi_subdev, rtsi_clock_line, INSN_CONFIG_DIO_OUTPUT);
if(ret < 0){
comedi_perror("comedi_dio_config");

41

Comedi

exit(1);
}

/* Set routing of the 3 main AI RTSI signals and their direction to output.
We’re reusing the already initialized configCmd instruction here since
it’s mostly the same. */
configCmd.chanspec = 0;
configCmd.data[1] = NI_RTSI_OUTPUT_ADR_START1;
ret = comedi_do_insn(dev, &configCmd);
if(ret < 0){
comedi_perror("comedi_do_insn: INSN_CONFIG");
exit(1);
}
ret = comedi_dio_config(dev, rtsi_subdev, 0, INSN_CONFIG_DIO_OUTPUT);
if(ret < 0){
comedi_perror("comedi_dio_config");
exit(1);
}

configCmd.chanspec = 1;
configCmd.data[1] = NI_RTSI_OUTPUT_ADR_START2;
ret = comedi_do_insn(dev, &configCmd);
if(ret < 0){
comedi_perror("comedi_do_insn: INSN_CONFIG");
exit(1);
}
ret = comedi_dio_config(dev, rtsi_subdev, 1, INSN_CONFIG_DIO_OUTPUT);
if(ret < 0){
comedi_perror("comedi_dio_config");
exit(1);
}

configCmd.chanspec = 2;
configCmd.data[1] = NI_RTSI_OUTPUT_SCLKG;
ret = comedi_do_insn(dev, &configCmd);
if(ret < 0){
comedi_perror("comedi_do_insn: INSN_CONFIG");
exit(1);
}
ret = comedi_dio_config(dev, rtsi_subdev, 2, INSN_CONFIG_DIO_OUTPUT);
if(ret < 0){
comedi_perror("comedi_dio_config");
exit(1);
}
}

An example to slave a m-series device from this master follows. A pre-m-series device would need to use
NI_MIO_RTSI_CLOCK for the clock source instead. In your code, you may also wish to configure the
master device to use the external clock source instead of using its internal clock directly (for best
syncronization).

void comediEnableSlave(comedi_t* dev){

42

Comedi

comedi_insn configCmd;
lsampl_t configData[3];
int ret;
unsigned int d = 0;;
static const unsigned rtsi_subdev = 10;
static const unsigned rtsi_clock_line = 7;

memset(&configCmd, 0, sizeof(configCmd));
memset(&configData, 0, sizeof(configData));
configCmd.insn = INSN_CONFIG;
configCmd.subdev = rtsi_subdev;
configCmd.chanspec = 0;
configCmd.n = 3;
configCmd.data = configData;
configCmd.data[0] = INSN_CONFIG_SET_CLOCK_SRC;
configCmd.data[1] = NI_MIO_PLL_RTSI_CLOCK(rtsi_clock_line);
configCmd.data[2] = 100; /* need to give it correct external clock period */
ret = comedi_do_insn(dev, &configCmd);
if(ret < 0){
comedi_perror("comedi_do_insn: INSN_CONFIG");
exit(1);
}
/* configure RTSI clock line as input */
ret = comedi_dio_config(dev, rtsi_subdev, rtsi_clock_line, INSN_CONFIG_DIO_INPUT);
if(ret < 0){
comedi_perror("comedi_dio_config");
exit(1);
}
/* Configure RTSI lines we are using for AI signals as inputs. */
ret = comedi_dio_config(dev, rtsi_subdev, 0, INSN_CONFIG_DIO_INPUT);
if(ret < 0){
comedi_perror("comedi_dio_config");
exit(1);
}
ret = comedi_dio_config(dev, rtsi_subdev, 1, INSN_CONFIG_DIO_INPUT);
if(ret < 0){
comedi_perror("comedi_dio_config");
exit(1);
}
ret = comedi_dio_config(dev, rtsi_subdev, 2, INSN_CONFIG_DIO_INPUT);
if(ret < 0){
comedi_perror("comedi_dio_config");
exit(1);
}
}

int comediSlaveStart(comedi_t* dev){
comedi_cmd cmd;
unsigned int nChannels = 8;
double sampleRate = 50000;
unsigned int chanList[8];
int i;

43

Comedi

// Setup chan list
for(i = 0; i < nChannels; i++){
chanList[i] = CR_PACK(i, 0, AREF_GROUND);
}
// Set up command
memset(&cmd, 0, sizeof(cmd));
ret = comedi_get_cmd_generic_timed(dev, subdevice, &cmd, int(1e9/(nChannels * sampleRate)));
if(ret<0){
printf("comedi_get_cmd_generic_timed failed\n");
return ret;
}
cmd.chanlist = chanList;
cmd.chanlist_len = nChannels;
cmd.scan_end_arg = nChannels;
cmd.start_src = TRIG_EXT;
cmd.start_arg = CR_EDGE | NI_EXT_RTSI(0);
cmd.convert_src = TRIG_EXT;
cmd.convert_arg = CR_INVERT | CR_EDGE | NI_EXT_RTSI(2);
cmd.stop_src = TRIG_NONE;

ret = comedi_command(dev0, &cmd0);
if(ret<0){
printf("comedi_command failed\n");
return ret;
}
return 0;
}

5. Writing a Comedi driver

This Section explains the most important implementations aspects of the Comedi device drivers. It tries
to give the interested device driver writer an overview of the different steps required to write a new
device driver.

This Section does not explain all implementation details of the Comedi software itself: Comedi has once
and for all solved lots of boring but indispensable infrastructural things, such as: timers, management of
which drivers are active, memory management for drivers and buffers, wrapping of RTOS-specific
interfaces, interrupt handler management, general error handling, the /proc interface, etc. So, the device
driver writers can concentrate on the interesting stuff: implementing their specific interface card’s DAQ
functionalities.

In order to make a decent Comedi device driver, you must know the answers to the following questions:

• How does the communication between user space and kernel space work?

44

Comedi

• What functionality is provided by the generic kernel-space Comedi functions, and what must be
provided for each specific new driver?

• How to use DMA and interrupts?

• What are the addresses and meanings of all the card’s registers?

This information is to be found in the so-called “register level manual” of the card. Without it, coding
a device driver is close to hopeless. It is also something that Comedi (and hence also this handbook)
cannot give any support or information for: board manufacturers all use their own design and
nomenclature.

5.1. Communication user space-kernel space

In user space, you interact with the functions implemented in the /usr/src/comedilib directory.
Most of the device driver core of the Comedilib library is found in lib subdirectory.

All user-space Comedi instructions and commands are transmitted to kernel space through a traditional
ioctl system call. (See /usr/src/comedilib/lib/ioctl.c.) The user space information command
is encoded as a number in the ioctl call, and decoded in the kernel space library. There, they are
executed by their kernel-space counterparts. This is done in the
/usr/src/comedi/comedi/comedi_fops.c file: the comedi_ioctl() function processes the
results of the ioctl system call, interprets its contents, and then calls the corresponding kernel space
do_..._ioctl function(s). For example, a Comedi instruction is further processed by the
do_insn_ioctl()function. (Which, in turn, uses parse_insn() for further detailed processing.)

The data corresponding to instructions and commands is transmitted with the copy_from_user()
system call; acquisition data captured by the interface card passes the kernel-user space boundary with
the help of a copy_to_user() system call.

5.2. Generic functionality

The major include files of the kernel-space part of Comedi are:

• include/linux/comedidev.h: the header file for kernel-only structures (device, subdevice, async
(i.e., buffer/event/interrupt/callback functionality for asynchronous DAQ in a Comedi command),
driver, lrange), variables, inline functions and constants.

• include/linux/comedi_rt.h: all the real-time stuff, such as management of ISR in RTAI and
RTLinux/Free, and spinlocks for atomic sections.

• include/linux/comedilib.h: the header file for the kernel library of Comedi.

45

Comedi

From all the relevant Comedi device driver code that is found in the /usr/src/comedi/comedi
directory (if the Comedi source has been installed in its normal /usr/src/comedi location), the
generic functionality is contained in two parts:

• A couple of C files contain the infrastructural support. From these C files, it’s especially the
comedi_fops.c file that implements what makes Comedi into what people want to use it for: a
library that has solved 90% of the DAQ device driver efforts, once and for all.

• For real-time applications, the subdirectory kcomedilib implements an interface in the kernel that is
similar to the Comedi interface accessible through the user-space Comedi library.

There are some differences in what is possible and/or needed in kernel space and in user space, so the
functionalities offered in kcomedilib are not an exact copy of the user-space library. For example,
locking, interrupt handling, real-time execution, callback handling, etc., are only available in kernel
space.

Most drivers don’t make use (yet) of these real-time functionalities.

5.2.1. Data structures

This Section explains the generic data structures that a device driver interacts with:

typedef struct comedi_lrange_struct comedi_lrange;
typedef struct comedi_subdevice_struct comedi_subdevice;
typedef struct comedi_device_struct comedi_device:
typedef struct comedi_async_struct comedi_async
typedef struct comedi_driver_struct comedi_driver;

They can be found in /usr/src/comedi/include/linux/comedidev.h. Most of the fields are
filled in by the Comedi infrastructure, but there are still quite a handful that your driver must provide or
use. As for the user-level Comedi, each of the hierarchical layers has its own data structures: channel
(comedi_lrange), subdevice, and device.

Note that these kernel-space data structures have similar names as their user-space equivalents, but they
have a different (kernel-side) view on the DAQ problem and a different meaning: they encode the
interaction with the hardware, not with the user.

However, the comedi_insn and comedi_cmd data structures are shared between user space and kernel
space: this should come as no surprise, since these data structures contain all information that the
user-space program must transfer to the kernel-space driver for each acquisition.

In addition to these data entities that are also known at the user level (device, sub-device, channel), the
device driver level provides two more data structures which the application programmer doesn’t get in

46

Comedi

touch with: the data structure comedi_driver that stores the device driver information that is relevant at
the operating system level, and the data structure comedi_async that stores the information about all
asynchronous activities (interrupts, callbacks and events).

5.2.1.1. comedi_lrange

The channel information is simple, since it contains only the signal range information:

struct comedi_lrange_struct{
int length;
comedi_krange range[GCC_ZERO_LENGTH_ARRAY];

};

5.2.1.2. comedi_subdevice

The subdevice is the smallest Comedi entity that can be used for “stand-alone” DAQ, so it is no surprise
that it is quite big:

struct comedi_subdevice_struct{
int type;
int n_chan;
int subdev_flags;
int len_chanlist; /* maximum length of channel/gain list */

void *private;

comedi_async *async;

void *lock;
void *busy;
unsigned int runflags;

int io_bits;

lsampl_t maxdata; /* if maxdata==0, use list */
lsampl_t *maxdata_list; /* list is channel specific */

unsigned int flags;
unsigned int *flaglist;

comedi_lrange *range_table;
comedi_lrange **range_table_list;

unsigned int *chanlist; /* driver-owned chanlist (not used) */

int (*insn_read)(comedi_device *,comedi_subdevice *,comedi_insn *,lsampl_t *);
int (*insn_write)(comedi_device *,comedi_subdevice *,comedi_insn *,lsampl_t *);
int (*insn_bits)(comedi_device *,comedi_subdevice *,comedi_insn *,lsampl_t *);

47

Comedi

int (*insn_config)(comedi_device *,comedi_subdevice *,comedi_insn *,lsampl_t *);

int (*do_cmd)(comedi_device *,comedi_subdevice *);
int (*do_cmdtest)(comedi_device *,comedi_subdevice *,comedi_cmd *);
int (*poll)(comedi_device *,comedi_subdevice *);
int (*cancel)(comedi_device *,comedi_subdevice *);

int (*buf_change)(comedi_device *,comedi_subdevice *s,unsigned long new_size);
void (*munge)(comedi_device *, comedi_subdevice *s, void *data, unsigned int num_bytes, unsigned int start_chan_index);

unsigned int state;
};

The function pointers (*insn_read) ... (*cancel) . offer (pointers to) the standardized user-visible
API that every subdevice should offer; every device driver has to fill in these functions with their
board-specific implementations. (Functionality for which Comedi provides generic functions will, by
definition, not show up in the device driver data structures.)

The buf_change() and munge() functions offer functionality that is not visible to the user and for
which the device driver writer must provide a board-specific implementation: buf_change() is called
when a change in the data buffer requires handling; munge() transforms different bit-representations of
DAQ values, for example from unsigned to 2’s complement.

5.2.1.3. comedi_device

The last data structure stores the information at the device level:

struct comedi_device_struct{
int use_count;
comedi_driver *driver;
void *private;
kdev_t minor;
char *board_name;
const void *board_ptr;
int attached;
int rt;
spinlock_t spinlock;
int in_request_module;

int n_subdevices;
comedi_subdevice *subdevices;
int options[COMEDI_NDEVCONFOPTS];

/* dumb */
int iobase;
int irq;

comedi_subdevice *read_subdev;
wait_queue_head_t read_wait;

48

Comedi

comedi_subdevice *write_subdev;
wait_queue_head_t write_wait;

struct fasync_struct *async_queue;

void (*open)(comedi_device *dev);
void (*close)(comedi_device *dev);

};

5.2.1.4. comedi_async

The following data structure contains all relevant information: addresses and sizes of buffers, pointers to
the actual data, and the information needed for event handling:

struct comedi_async_struct{
void *prealloc_buf; /* pre-allocated buffer */
unsigned int prealloc_bufsz; /* buffer size, in bytes */
unsigned long *buf_page_list; /* physical address of each page */
unsigned int max_bufsize; /* maximum buffer size, bytes */
unsigned int mmap_count; /* current number of mmaps of prealloc_buf */

volatile unsigned int buf_write_count; /* byte count for writer (write completed) */
volatile unsigned int buf_write_alloc_count; /* byte count for writer (allocated for writing) */
volatile unsigned int buf_read_count; /* byte count for reader (read completed)*/

unsigned int buf_write_ptr; /* buffer marker for writer */
unsigned int buf_read_ptr; /* buffer marker for reader */

unsigned int cur_chan; /* useless channel marker for interrupt */
/* number of bytes that have been received for current scan */
unsigned int scan_progress;
/* keeps track of where we are in chanlist as for munging */
unsigned int munge_chan;

unsigned int events; /* events that have occurred */

comedi_cmd cmd;

// callback stuff
unsigned int cb_mask;
int (*cb_func)(unsigned int flags,void *);
void *cb_arg;

int (*inttrig)(comedi_device *dev,comedi_subdevice *s,unsigned int x);
};

49

Comedi

5.2.1.5. comedi_driver

struct comedi_driver_struct{
struct comedi_driver_struct *next;

char *driver_name;
struct module *module;
int (*attach)(comedi_device *,comedi_devconfig *);
int (*detach)(comedi_device *);

/* number of elements in board_name and board_id arrays */
unsigned int num_names;
void *board_name;
/* offset in bytes from one board name pointer to the next */
int offset;
};

5.2.2. Generic driver support functions

The directory comedi contains a large set of support functions. Some of the most important ones are
given below.

From comedi/comedi_fops.c, functions to handle the hardware events (which also runs the registered
callback function), to get data in and out of the software data buffer, and to parse the incoming functional
requests:

void comedi_event(comedi_device *dev,comedi_subdevice *s,unsigned int mask);

int comedi_buf_put(comedi_async *async, sampl_t x);
int comedi_buf_get(comedi_async *async, sampl_t *x);

static int parse_insn(comedi_device *dev,comedi_insn *insn,lsampl_t *data,void *file);

The file comedi/kcomedilib/kcomedilib_main.c provides functions to register a callback, to poll
an ongoing data acquisition, and to print an error message:

int comedi_register_callback(comedi_t *d,unsigned int subdevice, unsigned int mask,int (*cb)(unsigned int,void *),void *arg);

int comedi_poll(comedi_t *d, unsigned int subdevice);

void comedi_perror(const char *message);

The file comedi/rt.c provides interrupt handling for real-time tasks (one interrupt per device!):

int comedi_request_irq(unsigned irq,void (*handler)(int, void *,struct pt_regs *), unsigned long flags,const char *device,comedi_device *dev_id);
void comedi_free_irq(unsigned int irq,comedi_device *dev_id)

50

Comedi

5.3. Board-specific functionality

The /usr/src/comedi/comedi/drivers subdirectory contains the board-specific device driver
code. Each new card must get an entry in this directory. Or extend the functionality of an already
existing driver file if the new card is quite similar to that implemented in an already existing driver. For
example, many of the National Instruments DAQ cards use the same driver files.

To help device driver writers, Comedi provides the “skeleton” of a new device driver, in the
comedi/drivers/skel.c file. Before starting to write a new driver, make sure you understand this file,
and compare it to what you find in the other already available board-specific files in the same directory.

The first thing you notice in skel.c is the documentation section: the Comedi documentation is
partially generated automatically, from the information that is given in this section. So, please comply
with the structure and the keywords provided as Comedi standards.

The second part of the device driver contains board-specific static data structure and defines: addresses of
hardware registers; defines and function prototypes for functionality that is only used inside of the device
driver for this board; the encoding of the types and number of available channels; PCI information; etc.

Each driver has to register two functions which are called when you load and unload your board’s device
driver (typically via a kernel module):

mydriver_attach();
mydriver_detach();

In the “attach” function, memory is allocated for the necessary data structures, all properties of a device
and its subdevices are defined, and filled in in the generic Comedi data structures. As part of this,
pointers to the low level instructions being supported by the subdevice have to be set, which define the
basic functionality. In somewhat more detail, the mydriver_attach() function must:

• check and request the I/O port region, IRQ, DMA, and other hardware resources. It is convenient here
if you verify the existence of the hardware and the correctness of the other information given.
Sometimes, unfortunately, this cannot be done.

• allocate memory for the private data structures.

• initialize the board registers and possible subdevices (timer, DMA, PCI, hardware FIFO, etc.).

• return 1, indicating success. If there were any errors along the way, you should return the appropriate
error number. If an error is returned, the mydriver_detach() function is called. The
mydriver_detach() function should check any resources that may have been allocated and release

51

Comedi

them as necessary. The Comedi core frees dev->subdevices and dev->private, so this does not
need to be done in detach.

• If the driver has the possibility to offer asynchronous data acquisition, you have to code an interrupt
service routine, event handling routines, and/or callback routines.

Typically, you will be able to implement most of the above-mentioned functionality by cut-and-paste
from already existing drivers. The mydriver_attach() function needs most of your attention, because
it must correctly define and allocate the (private and generic) data structures that are needed for this
device. That is, each sub-device and each channel must get appropriate data fields, and an appropriate
initialization. The good news, of course, is that Comedi provides the data structures and the defines that
fit very well with almost all DAQ functionalities found on interface cards. These can be found in the
header files of the /usr/src/comedi/include/linux/ directory.

Drivers for digital IOs should implement the following functions:

• insn_bits(): drivers set this if they have a function that supports reading and writing multiple bits
in a digital I/O subdevice at the same time. Most (if not all) of the drivers use this interface instead of
insn_read and insn_write for DIO subdevices.

• insn_config(): implements INSN_CONFIG instructions. Currently used for configuring the
direction of digital I/O lines, although will eventually be used for generic configuration of drivers that
is outside the scope of the currently defined Comedi interface.

Finally, the device driver writer must implement the read and write functions for the analog channels
on the card:

• insn_read(): acquire the inputs on the board and transfer them to the software buffer of the driver.

• insn_write(): transfer data from the software buffer to the card, and execute the appropriate output
conversions.

In some drivers, you want to catch interrupts, and/or want to use the INSN_INTTRIG instruction. In this
case, you must provide and register these callback functions.

Implementation of all of the above-mentioned functions requires perfect knowledge about the hardware
registers and addresses of the interface card. In general, you can find some inspiration in the already
available device drivers, but don’t trust that blind cut-and-paste will bring you far...

5.4. Callbacks, events and interrupts

Continuous acquisition is tyically an asynchronous activity: the function call that has set the acquisition
in motion has returned before the acquisition has finished (or even started). So, not only the acquired data
must be sent back to the user’s buffer “in the background”, but various types of asynchronous event
handling can be needed during the acquisition:

• The hardware can generate some error or warning events.

• Normal functional interrupts are generated by the hardware, e.g., signalling the filling-up of the card’s
hardware buffer, or the end of an acquisition scan, etc.

52

Comedi

• The device driver writer can register a driver-supplied “callback” function, that is called at the end of
each hardware interrupt routine.

• Another driver-supplied callback function is executed when the user program launches an
INSN_INTTRIG instruction. This event handling is executed synchronously with the execution of the
triggering instruction.

The interrupt handlers are registered through the functions mentioned before The event handling is done
in the existing Comedi drivers in statements such as this one:

s->async->events |= COMEDI_CB_EOA | COMEDI_CB_ERROR

It fills in the bits corresponding to particular events in the comedi_async data structure. The possible
event bits are:

• COMEDI_CB_EOA: execute the callback at the “End Of-Acquisition”.

• COMEDI_CB_EOS: execute the callback at the “End-Of-Scan”.

• COMEDI_CB_OVERFLOW : execute the callback when a buffer overflow has occurred.

• COMEDI_CB_ERROR: execute the callback at the occurrence of an (undetermined) error.

5.5. Device driver caveats

A few things to strive for when writing a new driver:

• Some DAQ cards consist of different “layers” of hardware, which can each be given their own device
driver. Examples are: some of the National Instruments cards, that all share the same Mite PCI driver
chip; the ubiquitous parallel port, that can be used for simple digital IO acquisitions. If your new card
has such a multi-layer design too, please take the effort to provide drivers for each layer separately.

• Your hardware driver should be functional appropriate to the resources allocated. I.e., if the driver is
fully functional when configured with an IRQ and DMA, it should still function moderately well with
just an IRQ, or still do minor tasks without IRQ or DMA. Does your driver really require an IRQ to do
digital I/O? Maybe someone will want to use your driver just to do digital I/O and has no interrupts
available.

• Drivers are to have absolutely no global variables, mainly because the existence of global variables
immediately negates any possibility of using the driver for two devices. The pointer dev->private
should be used to point to a structure containing any additional variables needed by a driver/device
combination.

• Drivers should report errors and warnings via the comedi_error() function. (This is not the same
function as the user-space comedi_perror() function.)

53

Comedi

5.6. Integrating the driver in the Comedi library

For integrating new drivers in the Comedi’s source tree the following things have to be done:

• Choose a sensible name for the source code file. Let’s assume here that you call it “mydriver.c”

• Put your new driver into “comedi/drivers/mydriver.c”.

• Edit “comedi/drivers/Makefile.am” and add “mydriver.ko” to the “module_PROGRAMS” list. Also
add a line

mydriver_ko_SOURCES = mydriver.c

in the alphabetically appropriate place.

• Run ./autogen.sh in the top-level comedi directory. You will need to have (a recent version of)
autoconf and automake installed to successfully run autogen.sh. Afterwards, your driver will be built
along with the rest of the drivers when you ’make’.

• If you want to have your driver included in the Comedi distribution (you definitely want to :-)) send it
to David Schleef

<ds@schleef.org>

or Frank Hess

<fmhess@users.sourceforge.net>

for review and integration. Note your work must be licensed under terms compatible with the GNU
GPL to be distributed as a part of Comedi.

6. Low-level drivers

6.1. Low-level drivers

6.1.1. 8255.o -- generic 8255 support

Author: ds

Status: works

Manufacturer Device Name
standard 8255 8255

The classic in digital I/O. The 8255 appears in Comedi as a single
digital I/O subdevice with 24 channels. The channel 0 corresponds
to the 8255’s port A, bit 0; channel 23 corresponds to port C, bit
7. Direction configuration is done in blocks, with channels 0-7,

54

Comedi

8-15, 16-19, and 20-23 making up the 4 blocks. The only 8255 mode
supported is mode 0.

You should enable compilation this driver if you plan to use a board
that has an 8255 chip. For multifunction boards, the main driver will
configure the 8255 subdevice automatically.

This driver also works independently with ISA and PCI cards that
directly map the 8255 registers to I/O ports, including cards with
multiple 8255 chips. To configure the driver for such a card, the
option list should be a list of the I/O port bases for each of the
8255 chips. For example,

comedi_config /dev/comedi0 8255 0x200,0x204,0x208,0x20c

Note that most PCI 8255 boards do NOT work with this driver, and
need a separate driver as a wrapper. For those that do work, the
I/O port base address can be found in the output of ’lspci -v’.

6.1.2. acl7225b.o -- Adlink NuDAQ ACL-7225b & compatibles

Author: JosÃ© Luis SÃ¡nchez (jsanchezv@teleline.es)

Status: testing

Manufacturer Device Name
Adlink ACL-7225b acl7225b

ICP P16R16DIO p16r16dio

6.1.3. adl_pci6208.o -- ADLink PCI-6208A

Author: nsyeow <nsyeow@pd.jaring.my>

Status: untested

55

Comedi

Manufacturer Device Name
ADLink PCI-6208A adl_pci6208

Configuration Options:
none

6.1.4. adl_pci7432.o -- Driver for the Adlink PCI-7432 64 ch. isolated digital
io board

Author: Michel Lachaine <mike@mikelachaine.ca>

Status: experimental

Manufacturer Device Name
ADLink PCI-7432 pci7432

Configuration Options:
none

6.1.5. adl_pci8164.o -- Driver for the Adlink PCI-8164 4 Axes Motion
Control board

Author: Michel Lachaine <mike@mikelachaine.ca>

Status: experimental

Manufacturer Device Name
ADLink PCI-8164 pci8164

Configuration Options:
none

56

Comedi

6.1.6. adl_pci9111.o -- Adlink PCI-9111HR

Author: Emmanuel Pacaud <emmanuel.pacaud@univ-poitiers.fr>

Status: experimental

Manufacturer Device Name
ADLink PCI-9111HR adl_pci9111

- ai_insn read
- ao_insn read/write
- di_insn read
- do_insn read/write
- ai_do_cmd mode with the following sources:

- start_src TRIG_NOW
- scan_begin_src TRIG_FOLLOW TRIG_TIMER TRIG_EXT
- convert_src TRIG_TIMER TRIG_EXT
- scan_end_src TRIG_COUNT
- stop_src TRIG_COUNT TRIG_NONE

The scanned channels must be consecutive and start from 0. They must
all have the same range and aref.

Configuration options:

[0] - PCI bus number (optional)
[1] - PCI slot number (optional)

If bus/slot is not specified, the first available PCI
device will be used.

6.1.7. adl_pci9118.o -- Adlink PCI-9118DG, PCI-9118HG, PCI-9118HR

Author: Michal Dobes <dobes@tesnet.cz>

57

Comedi

Status: works

Manufacturer Device Name
ADLink PCI-9118DG pci9118dg

ADLink PCI-9118HG pci9118hg

ADLink PCI-9118HR pci9118hr

This driver supports AI, AO, DI and DO subdevices.
AI subdevice supports cmd and insn interface,
other subdevices support only insn interface.
For AI:
- If cmd->scan_begin_src=TRIG_EXT then trigger input is TGIN (pin 46).
- If cmd->convert_src=TRIG_EXT then trigger input is EXTTRG (pin 44).
- If cmd->start_src/stop_src=TRIG_EXT then trigger input is TGIN (pin 46).
- It is not neccessary to have cmd.scan_end_arg=cmd.chanlist_len but
cmd.scan_end_arg modulo cmd.chanlist_len must by 0.

- If return value of cmdtest is 5 then you’ve bad channel list
(it isn’t possible mixture S.E. and DIFF inputs or bipolar and unipolar
ranges).

There are some hardware limitations:
a) You cann’t use mixture of unipolar/bipoar ranges or differencial/single

ended inputs.
b) DMA transfers must have the length aligned to two samples (32 bit),

so there is some problems if cmd->chanlist_len is odd. This driver tries
bypass this with adding one sample to the end of the every scan and discard
it on output but this cann’t be used if cmd->scan_begin_src=TRIG_FOLLOW
and is used flag TRIG_WAKE_EOS, then driver switch to interrupt driven mode
with interrupt after every sample.

c) If isn’t used DMA then you can use only mode where
cmd->scan_begin_src=TRIG_FOLLOW.

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)

If bus/slot is not specified, then first available PCI
card will be used.

[2] - 0= standard 8 DIFF/16 SE channels configuration
n= external multiplexer connected, 1<=n<=256

[3] - 0=autoselect DMA or EOC interrupts operation
1=disable DMA mode
3=disable DMA and INT, only insn interface will work

[4] - sample&hold signal - card can generate signal for external S&H board
0=use SSHO (pin 45) signal is generated in onboard hardware S&H logic
0!=use ADCHN7 (pin 23) signal is generated from driver, number

say how long delay is requested in ns and sign polarity of the hold
(in this case external multiplexor can serve only 128 channels)

[5] - 0=stop measure on all hardware errors
2|=ignore ADOR - A/D Overrun status

8|=ignore Bover - A/D Burst Mode Overrun status
256|=ignore nFull - A/D FIFO Full status

58

Comedi

6.1.8. adv_pci1710.o -- Advantech PCI-1710, PCI-1710HG, PCI-1711,
PCI-1713, Advantech PCI-1720, PCI-1731

Author: Michal Dobes <dobes@tesnet.cz>

Status: works

Manufacturer Device Name
Advantech PCI-1710 pci1710

Advantech PCI-1710HG pci1710hg

Advantech PCI-1711 pci1711

Advantech PCI-1713 pci1713

Advantech PCI-1720 pci1720

Advantech PCI-1731 pci1731

This driver supports AI, AO, DI and DO subdevices.
AI subdevice supports cmd and insn interface,
other subdevices support only insn interface.

The PCI-1710 and PCI-1710HG have the same PCI device ID, so the
driver cannot distinguish between them, as would be normal for a
PCI driver.

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)

If bus/slot is not specified, the first available PCI
device will be used.

59

Comedi

6.1.9. adv_pci_dio.o -- Advantech PCI-1730, PCI-1733, PCI-1734, PCI-1750,
PCI-1751, PCI-1752, PCI-1753/E, PCI-1754, PCI-1756, PCI-1762

Author: Michal Dobes <dobes@tesnet.cz>

Status: untested

Manufacturer Device Name
Advantech PCI-1730 pci1730

Advantech PCI-1733 pci1733

Advantech PCI-1734 pci1734

Advantech PCI-1750 pci1750

Advantech PCI-1751 pci1751

Advantech PCI-1752 pci1752

Advantech PCI-1753 pci1753

Advantech PCI-1753+PCI-1753E pci1753e

Advantech PCI-1754 pci1754

Advantech PCI-1756 pci1756

Advantech PCI-1760 pci1760

Advantech PCI-1762 pci1762

This driver supports now only insn interface for DI/DO/DIO.

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)

If bus/slot is not specified, the first available PCI
device will be used.

6.1.10. aio_aio12_8.o -- Acces I/O Products PC-104 AIO12-8 Analog I/O
Board

Author: Pablo Mejia <pablo.mejia@cctechnol.com>

Status: experimental

Manufacturer Device Name
Acces I/O PC-104 AIO12-8 pci1762

60

Comedi

Configuration Options:
[0] - I/O port base address

Only synchronous operations are supported.

6.1.11. aio_iiro_16.o -- Acces I/O Products PC-104 IIRO16 Relay And
Isolated Input Board

Author: Zachary Ware <zach.ware@cctechnol.com>

Status: experimental

Manufacturer Device Name
Acces I/O PC-104 AIO12-8 pci1762

Configuration Options:
[0] - I/O port base address

6.1.12. amplc_dio200.o -- Amplicon PC272E, PCI272

Author: Ian Abbott <abbotti@mev.co.uk>

Status: works

Manufacturer Device Name
Amplicon PC212E pc212e

Amplicon PC214E pc214e

Amplicon PC215E pc215e

Amplicon PCI215 pci215

Amplicon PC218E pc218e

61

Comedi

Manufacturer Device Name
Amplicon PC272E pc272e

Amplicon PCI272 pci272

Configuration options - PC212E, PC214E, PC215E, PC218E, PC272E:
[0] - I/O port base address
[1] - IRQ (optional, but commands won’t work without it)

Configuration options - PCI215, PCI272:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first available PCI device will
be used.

Passing a zero for an option is the same as leaving it unspecified.

SUBDEVICES

PC218E PC212E PC215E/PCI215
------------- ------------- -------------

Subdevices 7 6 5
0 CTR-X1 PPI-X PPI-X
1 CTR-X2 CTR-Y1 PPI-Y
2 CTR-Y1 CTR-Y2 CTR-Z1
3 CTR-Y2 CTR-Z1 CTR-Z2
4 CTR-Z1 CTR-Z2 INTERRUPT
5 CTR-Z2 INTERRUPT
6 INTERRUPT

PC214E PC272E/PCI272
------------- -------------

Subdevices 4 4
0 PPI-X PPI-X
1 PPI-Y PPI-Y
2 CTR-Z1* PPI-Z
3 INTERRUPT* INTERRUPT

Each PPI is a 8255 chip providing 24 DIO channels. The DIO channels
are configurable as inputs or outputs in four groups:

Port A - channels 0 to 7
Port B - channels 8 to 15
Port CL - channels 16 to 19
Port CH - channels 20 to 23

Only mode 0 of the 8255 chips is supported.

Each CTR is a 8254 chip providing 3 16-bit counter channels. Each
channel is configured individually with INSN_CONFIG instructions. The

62

Comedi

specific type of configuration instruction is specified in data[0].
Some configuration instructions expect an additional parameter in
data[1]; others return a value in data[1]. The following configuration
instructions are supported:

INSN_CONFIG_8254_SET_MODE. Sets the counter channel’s mode and
BCD/binary setting specified in data[1].

INSN_CONFIG_8254_READ_STATUS. Reads the status register value for the
counter channel into data[1].

INSN_CONFIG_SET_CLOCK_SRC. Sets the counter channel’s clock source as
specified in data[1] (this is a hardware-specific value). Not
supported on PC214E. For the other boards, valid clock sources are
0 to 7 as follows:

0. CLK n, the counter channel’s dedicated CLK input from the SK1
connector. (N.B. for other values, the counter channel’s CLKn
pin on the SK1 connector is an output!)

1. Internal 10 MHz clock.
2. Internal 1 MHz clock.
3. Internal 100 kHz clock.
4. Internal 10 kHz clock.
5. Internal 1 kHz clock.
6. OUT n-1, the output of counter channel n-1 (see note 1 below).
7. Ext Clock, the counter chip’s dedicated Ext Clock input from
the SK1 connector. This pin is shared by all three counter
channels on the chip.

INSN_CONFIG_GET_CLOCK_SRC. Returns the counter channel’s current
clock source in data[1]. For internal clock sources, data[2] is set
to the period in ns.

INSN_CONFIG_SET_GATE_SRC. Sets the counter channel’s gate source as
specified in data[2] (this is a hardware-specific value). Not
supported on PC214E. For the other boards, valid gate sources are 0
to 7 as follows:

0. VCC (internal +5V d.c.), i.e. gate permanently enabled.
1. GND (internal 0V d.c.), i.e. gate permanently disabled.
2. GAT n, the counter channel’s dedicated GAT input from the SK1
connector. (N.B. for other values, the counter channel’s GATn
pin on the SK1 connector is an output!)

3. /OUT n-2, the inverted output of counter channel n-2 (see note
2 below).

4. Reserved.
5. Reserved.
6. Reserved.
7. Reserved.

INSN_CONFIG_GET_GATE_SRC. Returns the counter channel’s current gate
source in data[2].

63

Comedi

Clock and gate interconnection notes:

1. Clock source OUT n-1 is the output of the preceding channel on the
same counter subdevice if n > 0, or the output of channel 2 on the
preceding counter subdevice (see note 3) if n = 0.

2. Gate source /OUT n-2 is the inverted output of channel 0 on the
same counter subdevice if n = 2, or the inverted output of channel n+1
on the preceding counter subdevice (see note 3) if n < 2.

3. The counter subdevices are connected in a ring, so the highest
counter subdevice precedes the lowest.

The ’INTERRUPT’ subdevice pretends to be a digital input subdevice. The
digital inputs come from the interrupt status register. The number of
channels matches the number of interrupt sources. The PC214E does not
have an interrupt status register; see notes on ’INTERRUPT SOURCES’
below.

INTERRUPT SOURCES

PC218E PC212E PC215E/PCI215
------------- ------------- -------------

Sources 6 6 6
0 CTR-X1-OUT PPI-X-C0 PPI-X-C0
1 CTR-X2-OUT PPI-X-C3 PPI-X-C3
2 CTR-Y1-OUT CTR-Y1-OUT PPI-Y-C0
3 CTR-Y2-OUT CTR-Y2-OUT PPI-Y-C3
4 CTR-Z1-OUT CTR-Z1-OUT CTR-Z1-OUT
5 CTR-Z2-OUT CTR-Z2-OUT CTR-Z2-OUT

PC214E PC272E/PCI272
------------- -------------

Sources 1 6
0 JUMPER-J5 PPI-X-C0
1 PPI-X-C3
2 PPI-Y-C0
3 PPI-Y-C3
4 PPI-Z-C0
5 PPI-Z-C3

When an interrupt source is enabled in the interrupt source enable
register, a rising edge on the source signal latches the corresponding
bit to 1 in the interrupt status register.

When the interrupt status register value as a whole (actually, just the
6 least significant bits) goes from zero to non-zero, the board will
generate an interrupt. For level-triggered hardware interrupts (PCI
card), the interrupt will remain asserted until the interrupt status
register is cleared to zero. For edge-triggered hardware interrupts
(ISA card), no further interrupts will occur until the interrupt status
register is cleared to zero. To clear a bit to zero in the interrupt

64

Comedi

status register, the corresponding interrupt source must be disabled
in the interrupt source enable register (there is no separate interrupt
clear register).

The PC214E does not have an interrupt source enable register or an
interrupt status register; its ’INTERRUPT’ subdevice has a single
channel and its interrupt source is selected by the position of jumper
J5.

COMMANDS

The driver supports a read streaming acquisition command on the
’INTERRUPT’ subdevice. The channel list selects the interrupt sources
to be enabled. All channels will be sampled together (convert_src ==
TRIG_NOW). The scan begins a short time after the hardware interrupt
occurs, subject to interrupt latencies (scan_begin_src == TRIG_EXT,
scan_begin_arg == 0). The value read from the interrupt status register
is packed into a sampl_t value, one bit per requested channel, in the
order they appear in the channel list.

6.1.13. amplc_pc236.o -- Amplicon PC36AT, PCI236

Author: Ian Abbott <abbotti@mev.co.uk>

Status: works

Manufacturer Device Name
Amplicon PC36AT pc36at

Amplicon PCI236 pci236

Configuration options - PC36AT:
[0] - I/O port base address
[1] - IRQ (optional)

Configuration options - PCI236:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first available PCI device will be
used.

The PC36AT ISA board and PCI236 PCI board have a single 8255 appearing
as subdevice 0.

65

Comedi

Subdevice 1 pretends to be a digital input device, but it always returns
0 when read. However, if you run a command with scan_begin_src=TRIG_EXT,
a rising edge on port C bit 7 acts as an external trigger, which can be
used to wake up tasks. This is like the comedi_parport device, but the
only way to physically disable the interrupt on the PC36AT is to remove
the IRQ jumper. If no interrupt is connected, then subdevice 1 is
unused.

6.1.14. amplc_pc263.o -- Amplicon PC263, PCI263

Author: Ian Abbott <abbotti@mev.co.uk>

Status: works

Manufacturer Device Name
Amplicon PC263 pc263

Amplicon PCI263 pci263

Configuration options - PC263:
[0] - I/O port base address

Configuration options - PCI263:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first available PCI device will be
used.

Each board appears as one subdevice, with 16 digital outputs, each
connected to a reed-relay. Relay contacts are closed when output is 1.
The state of the outputs can be read.

6.1.15. amplc_pci224.o -- Amplicon PCI224, PCI234

Author: Ian Abbott <abbotti@mev.co.uk>

66

Comedi

Status: works, but see caveats

Manufacturer Device Name
Amplicon PCI224 pci224

Amplicon PCI234 pci234

- ao_insn read/write
- ao_do_cmd mode with the following sources:

- start_src TRIG_INT TRIG_EXT
- scan_begin_src TRIG_TIMER TRIG_EXT
- convert_src TRIG_NOW
- scan_end_src TRIG_COUNT
- stop_src TRIG_COUNT TRIG_EXT TRIG_NONE

The channel list must contain at least one channel with no repeated
channels. The scan end count must equal the number of channels in
the channel list.

There is only one external trigger source so only one of start_src,
scan_begin_src or stop_src may use TRIG_EXT.

Configuration options - PCI224:
[0] - PCI bus of device (optional).
[1] - PCI slot of device (optional).

If bus/slot is not specified, the first available PCI device
will be used.

[2] - Select available ranges according to jumper LK1. All channels
are set to the same range:
0=Jumper position 1-2 (factory default), 4 software-selectable
internal voltage references, giving 4 bipolar and 4 unipolar
ranges:
[-10V,+10V], [-5V,+5V], [-2.5V,+2.5V], [-1.25V,+1.25V],
[0,+10V], [0,+5V], [0,+2.5V], [0,1.25V].

1=Jumper position 2-3, 1 external voltage reference, giving
1 bipolar and 1 unipolar range:
[-Vext,+Vext], [0,+Vext].

Configuration options - PCI234:
[0] - PCI bus of device (optional).
[1] - PCI slot of device (optional).

If bus/slot is not specified, the first available PCI device
will be used.

[2] - Select internal or external voltage reference according to
jumper LK1. This affects all channels:
0=Jumper position 1-2 (factory default), Vref=5V internal.
1=Jumper position 2-3, Vref=Vext external.

[3] - Select channel 0 range according to jumper LK2:
0=Jumper position 2-3 (factory default), range [-2*Vref,+2*Vref]
(10V bipolar when options[2]=0).

1=Jumper position 1-2, range [-Vref,+Vref]

67

Comedi

(5V bipolar when options[2]=0).
[4] - Select channel 1 range according to jumper LK3: cf. options[3].
[5] - Select channel 2 range according to jumper LK4: cf. options[3].
[6] - Select channel 3 range according to jumper LK5: cf. options[3].

Passing a zero for an option is the same as leaving it unspecified.

1) All channels on the PCI224 share the same range. Any change to the
range as a result of insn_write or a streaming command will affect
the output voltages of all channels, including those not specified
by the instruction or command.

2) For the analog output command, the first scan may be triggered
falsely at the start of acquisition. This occurs when the DAC scan
trigger source is switched from ’none’ to ’timer’ (scan_begin_src =
TRIG_TIMER) or ’external’ (scan_begin_src == TRIG_EXT) at the start
of acquisition and the trigger source is at logic level 1 at the
time of the switch. This is very likely for TRIG_TIMER. For
TRIG_EXT, it depends on the state of the external line and whether
the CR_INVERT flag has been set. The remaining scans are triggered
correctly.

6.1.16. amplc_pci230.o -- Amplicom PCI230, PCI260 Multifunction I/O
boards

Author: Allan Willcox <allanwillcox@ozemail.com.au>, Steve D Sharples
<steve.sharples@nottingham.ac.uk>

Status: works

Manufacturer Device Name
Amplicon PCI230 pci230 or amplc_pci230

Amplicon PCI260 pci260 or amplc_pci230

Configuration options:
[0] - PCI bus of device (optional).
[1] - PCI slot of device (optional).

If bus/slot is not specified, the first available PCI device
will be used.

68

Comedi

6.1.17. c6xdigio.o -- Mechatronic Systems Inc. C6x_DIGIO DSP daughter
card

Author: Dan Block

Status: unknown

Manufacturer Device Name
Mechatronic Systems Inc. C6x_DIGIO DSP daughter card c6xdigio

This driver will not work with a 2.4 kernel.

6.1.18. cb_das16_cs.o -- Computer Boards PC-CARD DAS16/16

Author: ds

Status: experimental

Manufacturer Device Name
ComputerBoards PC-CARD DAS16/16 cb_das16_cs

ComputerBoards PC-CARD DAS16/16-AO cb_das16_cs

6.1.19. cb_pcidas.o -- MeasurementComputing PCI-DAS series with the
AMCC S5933 PCI controller

Author: Ivan Martinez <imr@oersted.dtu.dk>, Frank Mori Hess <fmhess@users.sourceforge.net>

69

Comedi

Status: There are many reports of the driver being used with most of the supported cards. Despite no
detailed log is maintained, it can be said that the driver is quite tested and stable.

Manufacturer Device Name
Measurement Computing PCI-DAS1602/16 cb_pcidas

Measurement Computing PCI-DAS1602/16jr cb_pcidas

Measurement Computing PCI-DAS1602/12 cb_pcidas

Measurement Computing PCI-DAS1200 cb_pcidas

Measurement Computing PCI-DAS1200jr cb_pcidas

Measurement Computing PCI-DAS1000 cb_pcidas

Measurement Computing PCI-DAS1001 cb_pcidas

Measurement Computing PCI_DAS1002 cb_pcidas

The boards may be autocalibrated using the comedi_calibrate
utility.

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first supported
PCI device found will be used.

For commands, the scanned channels must be consecutive
(i.e. 4-5-6-7, 2-3-4,...), and must all have the same
range and aref.

6.1.20. cb_pcidas64.o -- MeasurementComputing PCI-DAS64xx, 60XX,
and 4020 series with the PLX 9080 PCI controller

Author: Frank Mori Hess <fmhess@users.sourceforge.net>

Status: works

Manufacturer Device Name
Measurement Computing PCI-DAS6402/16 cb_pcidas64

Measurement Computing PCI-DAS6402/12 cb_pcidas64

Measurement Computing PCI-DAS64/M1/16 cb_pcidas64

70

Comedi

Manufacturer Device Name
Measurement Computing PCI-DAS64/M2/16 cb_pcidas64

Measurement Computing PCI-DAS64/M3/16 cb_pcidas64

Measurement Computing PCI-DAS6402/16/JR cb_pcidas64

Measurement Computing PCI-DAS64/M1/16/JR cb_pcidas64

Measurement Computing PCI-DAS64/M2/16/JR cb_pcidas64

Measurement Computing PCI-DAS64/M3/16/JR cb_pcidas64

Measurement Computing PCI-DAS64/M1/14 cb_pcidas64

Measurement Computing PCI-DAS64/M2/14 cb_pcidas64

Measurement Computing PCI-DAS64/M3/14 cb_pcidas64

Measurement Computing PCI-DAS6014 cb_pcidas64

Measurement Computing PCI-DAS6023 cb_pcidas64

Measurement Computing PCI-DAS6025 cb_pcidas64

Measurement Computing PCI-DAS6030 cb_pcidas64

Measurement Computing PCI-DAS6031 cb_pcidas64

Measurement Computing PCI-DAS6032 cb_pcidas64

Measurement Computing PCI-DAS6033 cb_pcidas64

Measurement Computing PCI-DAS6034 cb_pcidas64

Measurement Computing PCI-DAS6035 cb_pcidas64

Measurement Computing PCI-DAS6036 cb_pcidas64

Measurement Computing PCI-DAS6040 cb_pcidas64

Measurement Computing PCI-DAS6052 cb_pcidas64

Measurement Computing PCI-DAS6070 cb_pcidas64

Measurement Computing PCI-DAS6071 cb_pcidas64

Measurement Computing PCI-DAS4020/12 cb_pcidas64

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)

These boards may be autocalibrated with the comedi_calibrate utility.

To select the bnc trigger input on the 4020 (instead of the dio input),
specify a nonzero channel in the chanspec. If you wish to use an external
master clock on the 4020, you may do so by setting the scan_begin_src
to TRIG_OTHER, and using an INSN_CONFIG_TIMER_1 configuration insn
to configure the divisor to use for the external clock.

Some devices are not identified because the PCI device IDs are not yet
known. If you have such a board, please file a bug report at

71

Comedi

6.1.21. cb_pcidda.o -- MeasurementComputing PCI-DDA series

Author: Ivan Martinez <ivanmr@altavista.com>, Frank Mori Hess <fmhess@users.sourceforge.net>

Status: Supports 08/16, 04/16, 02/16, 08/12, 04/12, and 02/12

Manufacturer Device Name
Measurement Computing PCI-DDA08/12 cb_pcidda

Measurement Computing PCI-DDA04/12 cb_pcidda

Measurement Computing PCI-DDA02/12 cb_pcidda

Measurement Computing PCI-DDA08/16 cb_pcidda

Measurement Computing PCI-DDA04/16 cb_pcidda

Measurement Computing PCI-DDA02/16 cb_pcidda

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first available PCI
device will be used.

Only simple analog output writing is supported.

So far it has only been tested with:
- PCI-DDA08/12

Please report sucess/failure with other different cards to
<comedi@comedi.org>.

6.1.22. cb_pcimdas.o -- Measurement Computing PCI Migration series
boards

Author: Richard Bytheway

Status: experimental

Manufacturer Device Name
Computer Boards PCIM-DAS1602/16 cb_pcimdas

Written to support the PCIM-DAS1602/16 on a 2.4 series kernel.

72

Comedi

Configuration Options:
[0] - PCI bus number
[1] - PCI slot number

Developed from cb_pcidas and skel by Richard Bytheway (mocelet@sucs.org).
Only supports DIO, AO and simple AI in it’s present form.
No interrupts, multi channel or FIFO AI, although the card looks like it could support this.
See http://www.measurementcomputing.com/PDFManuals/pcim-das1602_16.pdf for more details.

6.1.23. cb_pcimdda.o -- Measurement Computing PCIM-DDA06-16

Author: Calin Culianu <calin@ajvar.org>

Status: works

Manufacturer Device Name
Measurement Computing PCIM-DDA06-16 cb_pcimdda

All features of the PCIM-DDA06-16 board are supported. This board
has 6 16-bit AO channels, and the usual 8255 DIO setup. (24 channels,
configurable in banks of 8 and 4, etc.). This board does not support commands.

The board has a peculiar way of specifying AO gain/range settings -- You have
1 jumper bank on the card, which either makes all 6 AO channels either
5 Volt unipolar, 5V bipolar, 10 Volt unipolar or 10V bipolar.

Since there is absolutely _no_ way to tell in software how this jumper is set
(well, at least according to the rather thin spec. from Measurement Computing
that comes with the board), the driver assumes the jumper is at its factory
default setting of +/-5V.

Also of note is the fact that this board features another jumper, whose
state is also completely invisible to software. It toggles two possible AO
output modes on the board:

- Update Mode: Writing to an AO channel instantaneously updates the actual
signal output by the DAC on the board (this is the factory default).

- Simultaneous XFER Mode: Writing to an AO channel has no effect until
you read from any one of the AO channels. This is useful for loading
all 6 AO values, and then reading from any one of the AO channels on the
device to instantly update all 6 AO values in unison. Useful for some
control apps, I would assume? If your jumper is in this setting, then you
need to issue your comedi_data_write()s to load all the values you want,
then issue one comedi_data_read() on any channel on the AO subdevice

73

Comedi

to initiate the simultaneous XFER.

Configuration Options:
[0] PCI bus (optional) (unimplemented)
[1] PCI slot (optional) (unimplemented)
[2] analog output range jumper setting

0 == +/- 5 V
1 == +/- 10 V

6.1.24. comedi_bond.o -- A driver to ’bond’ (merge) multiple subdevices
from multiple devices together as one.

Author: ds

Status: works

This driver allows you to ’bond’ (merge) multiple comedi subdevices
(coming from possibly difference boards and/or drivers) together. For
example, if you had a board with 2 different DIO subdevices, and
another with 1 DIO subdevice, you could ’bond’ them with this driver
so that they look like one big fat DIO subdevice. This makes writing
applications slightly easier as you don’t have to worry about managing
different subdevices in the application -- you just worry about
indexing one linear array of channel id’s.

Right now only DIO subdevices are supported as that’s the personal itch
I am scratching with this driver. If you want to add support for AI and AO
subdevs, go right on ahead and do so!

Commands aren’t supported -- although it would be cool if they were.

Configuration Options:
List of comedi-minors to bond. All subdevices of the same type
within each minor will be concatenated together in the order given here.

74

Comedi

6.1.25. comedi_parport.o -- Standard PC parallel port

Author: ds

Status: works in immediate mode

Manufacturer Device Name
standard parallel port comedi_parport

A cheap and easy way to get a few more digital I/O lines. Steal
additional parallel ports from old computers or your neighbors’
computers.

Option list:
0: I/O port base for the parallel port.
1: IRQ

Parallel Port Lines:

pin subdev chan aka
--- ------ ---- ---
1 2 0 strobe
2 0 0 data 0
3 0 1 data 1
4 0 2 data 2
5 0 3 data 3
6 0 4 data 4
7 0 5 data 5
8 0 6 data 6
9 0 7 data 7
10 1 3 acknowledge
11 1 4 busy
12 1 2 output
13 1 1 printer selected
14 2 1 auto LF
15 1 0 error
16 2 2 init
17 2 3 select printer
18-25 ground

Subdevices 0 is digital I/O, subdevice 1 is digital input, and
subdevice 2 is digital output. Unlike other Comedi devices,
subdevice 0 defaults to output.

Pins 13 and 14 are inverted once by Comedi and once by the
hardware, thus cancelling the effect.

Pin 1 is a strobe, thus acts like one. There’s no way in software
to change this, at least on a standard parallel port.

75

Comedi

Subdevice 3 pretends to be a digital input subdevice, but it always
returns 0 when read. However, if you run a command with
scan_begin_src=TRIG_EXT, it uses pin 10 as a external triggering
pin, which can be used to wake up tasks.

6.1.26. comedi_rt_timer.o -- Command emulator using real-time tasks

Author: ds, fmhess

Status: works

This driver requires RTAI or RTLinux to work correctly. It doesn’t
actually drive hardware directly, but calls other drivers and uses
a real-time task to emulate commands for drivers and devices that
are incapable of native commands. Thus, you can get accurately
timed I/O on any device.

Since the timing is all done in software, sampling jitter is much
higher than with a device that has an on-board timer, and maximum
sample rate is much lower.

Configuration options:
[0] - minor number of device you wish to emulate commands for
[1] - subdevice number you wish to emulate commands for

6.1.27. comedi_test.o -- generates fake waveforms

Author: Joachim Wuttke <Joachim.Wuttke@icn.siemens.de>, Frank Mori Hess
<fmhess@users.sourceforge.net>, ds

Status: works

This driver is mainly for testing purposes, but can also be used to
generate sample waveforms on systems that don’t have data acquisition
hardware.

76

Comedi

Configuration options:
[0] - Amplitude in microvolts for fake waveforms (default 1 volt)
[1] - Period in microseconds for fake waveforms (default 0.1 sec)

Generates a sawtooth wave on channel 0, square wave on channel 1, additional
waveforms could be added to other channels (currently they return flatline
zero volts).

6.1.28. contec_pci_dio.o -- Contec PIO1616L digital I/O board

Author: Stefano Rivoir <s.rivoir@gts.it>

Status: works

Manufacturer Device Name
Contec PIO1616L contec_pci_dio

Configuration Options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first supported
PCI device found will be used.

6.1.29. daqboard2000.o -- IOTech DAQBoard/2000

Author: Anders Blomdell <anders.blomdell@control.lth.se>

Status: works

Manufacturer Device Name
IOTech DAQBoard/2000 daqboard2000

Much of the functionality of this driver was determined from reading
the source code for the Windows driver.

77

Comedi

The FPGA on the board requires initialization code, which can
be loaded by comedi_config using the -i
option. The initialization code is available from http://www.comedi.org
in the comedi_nonfree_firmware tarball.

Configuration options:
none

6.1.30. das08.o -- DAS-08 compatible boards

Author: Warren Jasper, ds, Frank Hess

Status: works

Manufacturer Device Name
Keithley Metrabyte DAS08 das08

ComputerBoards DAS08 das08

ComputerBoards DAS08-PGM das08-pgm

ComputerBoards DAS08-PGH das08-pgh

ComputerBoards DAS08-PGL das08-pgl

ComputerBoards DAS08-AOH das08-aoh

ComputerBoards DAS08-AOL das08-aol

ComputerBoards DAS08-AOM das08-aom

ComputerBoards DAS08/JR-AO das08/jr-ao

ComputerBoards DAS08/JR-16-AO das08jr-16-ao

ComputerBoards PCI-DAS08 pci-das08

ComputerBoards PC104-DAS08 pc104-das08

ComputerBoards DAS08/JR/16 das08jr/16

This is a rewrite of the das08 and das08jr drivers.

Options (for ISA cards):
[0] - base io address

Options (for pci-das08):
[0] - bus (optional)
[1] = slot (optional)

Use the name ’pci-das08’ for the pci-das08, NOT ’das08’.

78

Comedi

The das08 driver doesn’t support asynchronous commands, since
the cheap das08 hardware doesn’t really support them. The
comedi_rt_timer driver can be used to emulate commands for this
driver.

6.1.31. das08_cs.o -- DAS-08 PCMCIA boards

Author: Warren Jasper, ds, Frank Hess

Status: works

Manufacturer Device Name
ComputerBoards PCM-DAS08 pcm-das08

This is the PCMCIA-specific support split off from the
das08 driver.

Options (for pcm-das08):
NONE

Command support does not exist, but could be added for this board.

6.1.32. das16.o -- DAS16 compatible boards

Author: Sam Moore, Warren Jasper, ds, Chris Baugher, Frank Hess, Roman Fietze

Status: works

Manufacturer Device Name
Keithley Metrabyte DAS-16 das-16

Keithley Metrabyte DAS-16G das-16g

Keithley Metrabyte DAS-16F das-16f

Keithley Metrabyte DAS-1201 das-1201

79

Comedi

Manufacturer Device Name
Keithley Metrabyte DAS-1202 das-1202

Keithley Metrabyte DAS-1401 das-1401

Keithley Metrabyte DAS-1402 das-1402

Keithley Metrabyte DAS-1601 das-1601

Keithley Metrabyte DAS-1602 das-1602

ComputerBoards PC104-DAS16/JR pc104-das16jr

ComputerBoards PC104-DAS16JR/16 pc104-das16jr/16

ComputerBoards CIO-DAS16JR/16 cio-das16jr/16

ComputerBoards CIO-DAS16/JR cio-das16/jr

ComputerBoards CIO-DAS1401/12 cio-das1401/12

ComputerBoards CIO-DAS1402/12 cio-das1402/12

ComputerBoards CIO-DAS1402/16 cio-das1402/16

ComputerBoards CIO-DAS1601/12 cio-das1601/12

ComputerBoards CIO-DAS1602/12 cio-das1602/12

ComputerBoards CIO-DAS1602/16 cio-das1602/16

ComputerBoards CIO-DAS16/330 cio-das16/330

A rewrite of the das16 and das1600 drivers.

Passing a zero for an option is the same as leaving it unspecified.

6.1.33. das16m1.o -- CIO-DAS16/M1

Author: Frank Mori Hess <fmhess@users.sourceforge.net>

Status: works

Manufacturer Device Name
MeasurementComputing CIO-DAS16/M1 cio-das16/m1

This driver supports a single board - the CIO-DAS16/M1.
As far as I know, there are no other boards that have
the same register layout. Even the CIO-DAS16/M1/16 is
significantly different.

I was _barely_ able to reach the full 1 MHz capability
of this board, using a hard real-time interrupt

80

Comedi

(set the TRIG_RT flag in your comedi_cmd and use
rtlinux or RTAI). The board can’t do dma, so the bottleneck is
pulling the data across the ISA bus. I timed the interrupt
handler, and it took my computer ~470 microseconds to pull 512
samples from the board. So at 1 Mhz sampling rate,
expect your CPU to be spending almost all of its
time in the interrupt handler.

This board has some unusual restrictions for its channel/gain list. If the
list has 2 or more channels in it, then two conditions must be satisfied:
(1) - even/odd channels must appear at even/odd indices in the list
(2) - the list must have an even number of entries.

irq can be omitted, although the cmd interface will not work without it.

6.1.34. das1800.o -- Keithley Metrabyte DAS1800 (& compatibles)

Author: Frank Mori Hess <fmhess@users.sourceforge.net>

Status: works

Manufacturer Device Name
Keithley Metrabyte DAS-1701ST das-1701st

Keithley Metrabyte DAS-1701ST-DA das-1701st-da

Keithley Metrabyte DAS-1701/AO das-1701ao

Keithley Metrabyte DAS-1702ST das-1702st

Keithley Metrabyte DAS-1702ST-DA das-1702st-da

Keithley Metrabyte DAS-1702HR das-1702hr

Keithley Metrabyte DAS-1702HR-DA das-1702hr-da

Keithley Metrabyte DAS-1702/AO das-1702ao

Keithley Metrabyte DAS-1801ST das-1801st

Keithley Metrabyte DAS-1801ST-DA das-1801st-da

Keithley Metrabyte DAS-1801HC das-1801hc

Keithley Metrabyte DAS-1801AO das-1801ao

Keithley Metrabyte DAS-1802ST das-1802st

Keithley Metrabyte DAS-1802ST-DA das-1802st-da

Keithley Metrabyte DAS-1802HR das-1802hr

Keithley Metrabyte DAS-1802HR-DA das-1802hr-da

81

Comedi

Manufacturer Device Name
Keithley Metrabyte DAS-1802HC das-1802hc

Keithley Metrabyte DAS-1802AO das-1802ao

The waveform analog output on the ’ao’ cards is not supported.
If you need it, send me (Frank Hess) an email.

Configuration options:
[0] - I/O port base address
[1] - IRQ (optional, required for timed or externally triggered conversions)
[2] - DMA0 (optional, requires irq)
[3] - DMA1 (optional, requires irq and dma0)

6.1.35. das6402.o -- Keithley Metrabyte DAS6402 (& compatibles)

Author: Oystein Svendsen <svendsen@pvv.org>

Status: bitrotten

Manufacturer Device Name
Keithley Metrabyte DAS6402 das6402

This driver has suffered bitrot.

6.1.36. das800.o -- Keithley Metrabyte DAS800 (& compatibles)

Author: Frank Mori Hess <fmhess@users.sourceforge.net>

Status: works, cio-das802/16 untested - email me if you have tested it

Manufacturer Device Name
Keithley Metrabyte DAS-800 das-800

Keithley Metrabyte DAS-801 das-801

Keithley Metrabyte DAS-802 das-802

82

Comedi

Manufacturer Device Name
Measurement Computing CIO-DAS800 cio-das800

Measurement Computing CIO-DAS801 cio-das801

Measurement Computing CIO-DAS802 cio-das802

Measurement Computing CIO-DAS802/16 cio-das802/16

Configuration options:
[0] - I/O port base address
[1] - IRQ (optional, required for timed or externally triggered conversions)

All entries in the channel/gain list must use the same gain and be
consecutive channels counting upwards in channel number (these are
hardware limitations.)

I’ve never tested the gain setting stuff since I only have a
DAS-800 board with fixed gain.

The cio-das802/16 does not have a fifo-empty status bit! Therefore
only fifo-half-full transfers are possible with this card.

6.1.37. dmm32at.o -- Diamond Systems mm32at driver.

Author: Perry J. Piplani <perry.j.piplani@nasa.gov>

Status: experimental

This driver is for the Diamond Systems MM-32-AT board

Configuration Options:
comedi_config /dev/comedi0 dmm32at baseaddr,irq

6.1.38. dt2801.o -- Data Translation DT2801 series and DT01-EZ

Author: ds

83

Comedi

Status: works

Manufacturer Device Name
Data Translation DT2801 dt2801

Data Translation DT2801-A dt2801

Data Translation DT2801/5716A dt2801

Data Translation DT2805 dt2801

Data Translation DT2805/5716A dt2801

Data Translation DT2808 dt2801

Data Translation DT2818 dt2801

Data Translation DT2809 dt2801

Data Translation DT01-EZ dt2801

This driver can autoprobe the type of board.

Configuration options:
[0] - I/O port base address
[1] - unused
[2] - A/D reference 0=differential, 1=single-ended
[3] - A/D range

0 = [-10,10]
1 = [0,10]
[4] - D/A 0 range

0 = [-10,10]
1 = [-5,5]
2 = [-2.5,2.5]
3 = [0,10]
4 = [0,5]
[5] - D/A 1 range (same choices)

6.1.39. dt2811.o -- Data Translation DT2811

Author: ds

Status: works

Manufacturer Device Name
Data Translation DT2811-PGL dt2811-pgl

Data Translation DT2811-PGH dt2811-pgh

Configuration options:

84

Comedi

[0] - I/O port base address
[1] - IRQ, although this is currently unused
[2] - A/D reference

0 = signle-ended
1 = differential

2 = pseudo-differential (common reference)
[3] - A/D range

0 = [-5,5]
1 = [-2.5,2.5]
2 = [0,5]
[4] - D/A 0 range (same choices)
[4] - D/A 1 range (same choices)

6.1.40. dt2814.o -- Data Translation DT2814

Author: ds

Status: complete

Manufacturer Device Name
Data Translation DT2814 dt2814

Configuration options:
[0] - I/O port base address
[1] - IRQ

This card has 16 analog inputs multiplexed onto a 12 bit ADC. There
is a minimally useful onboard clock. The base frequency for the
clock is selected by jumpers, and the clock divider can be selected
via programmed I/O. Unfortunately, the clock divider can only be
a power of 10, from 1 to 10^7, of which only 3 or 4 are useful. In
addition, the clock does not seem to be very accurate.

6.1.41. dt2815.o -- Data Translation DT2815

Author: ds

85

Comedi

Status: mostly complete, untested

Manufacturer Device Name
Data Translation DT2815 dt2815

I’m not sure anyone has ever tested this board. If you have information
contrary, please update.

Configuration options:
[0] - I/O port base base address
[1] - IRQ (unused)
[2] - Voltage unipolar/bipolar configuration

0 == unipolar 5V (0V -- +5V)
1 == bipolar 5V (-5V -- +5V)
[3] - Current offset configuration

0 == disabled (0mA -- +32mAV)
1 == enabled (+4mA -- +20mAV)

[4] - Firmware program configuration
0 == program 1 (see manual table 5-4)
1 == program 2 (see manual table 5-4)
2 == program 3 (see manual table 5-4)
3 == program 4 (see manual table 5-4)

[5] - Analog output 0 range configuration
0 == voltage
1 == current

[6] - Analog output 1 range configuration (same options)
[7] - Analog output 2 range configuration (same options)
[8] - Analog output 3 range configuration (same options)
[9] - Analog output 4 range configuration (same options)
[10] - Analog output 5 range configuration (same options)
[11] - Analog output 6 range configuration (same options)
[12] - Analog output 7 range configuration (same options)

6.1.42. dt2817.o -- Data Translation DT2817

Author: ds

Status: complete

Manufacturer Device Name
Data Translation DT2817 dt2817

A very simple digital I/O card. Four banks of 8 lines, each bank
is configurable for input or output. One wonders why it takes a

86

Comedi

50 page manual to describe this thing.

The driver (which, btw, is much less than 50 pages) has 1 subdevice
with 32 channels, configurable in groups of 8.

Configuration options:
[0] - I/O port base base address

6.1.43. dt282x.o -- Data Translation DT2821 series (including DT-EZ)

Author: ds

Status: complete

Manufacturer Device Name
Data Translation DT2821 dt2821

Data Translation DT2821-F-16SE dt2821-f

Data Translation DT2821-F-8DI dt2821-f

Data Translation DT2821-G-16SE dt2821-f

Data Translation DT2821-G-8DI dt2821-g

Data Translation DT2823 dt2823

Data Translation DT2824-PGH dt2824-pgh

Data Translation DT2824-PGL dt2824-pgl

Data Translation DT2825 dt2825

Data Translation DT2827 dt2827

Data Translation DT2828 dt2828

Data Translation DT21-EZ dt21-ez

Data Translation DT23-EZ dt23-ez

Data Translation DT24-EZ dt24-ez

Data Translation DT24-EZ-PGL dt24-ez-pgl

Configuration options:
[0] - I/O port base address
[1] - IRQ
[2] - DMA 1
[3] - DMA 2
[4] - AI jumpered for 0=single ended, 1=differential
[5] - AI jumpered for 0=straight binary, 1=2’s complement
[6] - AO 0 jumpered for 0=straight binary, 1=2’s complement
[7] - AO 1 jumpered for 0=straight binary, 1=2’s complement

87

Comedi

[8] - AI jumpered for 0=[-10,10]V, 1=[0,10], 2=[-5,5], 3=[0,5]
[9] - AO 0 jumpered for 0=[-10,10]V, 1=[0,10], 2=[-5,5], 3=[0,5],

4=[-2.5,2.5]
[10]- A0 1 jumpered for 0=[-10,10]V, 1=[0,10], 2=[-5,5], 3=[0,5],

4=[-2.5,2.5]

6.1.44. dt3000.o -- Data Translation DT3000 series

Author: ds

Status: works

Manufacturer Device Name
Data Translation DT3001 dt3000

Data Translation DT3001-PGL dt3000

Data Translation DT3002 dt3000

Data Translation DT3003 dt3000

Data Translation DT3003-PGL dt3000

Data Translation DT3004 dt3000

Data Translation DT3005 dt3000

Data Translation DT3004-200 dt3000

There is code to support AI commands, but it may not work.

AO commands are not supported.

6.1.45. dt9812.o -- Data Translation DT9812 USB module

Author: anders.blomdell@control.lth.se (Anders Blomdell)

Status: in development

88

Comedi

Manufacturer Device Name
Data Translation DT9812 dt9812

This driver works, but bulk transfers not implemented. Might be a starting point
for someone else. I found out too late that USB has too high latencies (>1 ms)
for my needs.

6.1.46. fl512.o -- unknown

Author: Anders Gnistrup <ex18@kalman.iau.dtu.dk>

Status: unknown

Manufacturer Device Name
unknown FL512 fl512

Digital I/O is not supported.

Configuration options:
[0] - I/O port base address

6.1.47. me4000.o -- Meilhaus ME-4000 series boards

Author: gg (Guenter Gebhardt <g.gebhardt@meilhaus.com>)

Status: broken (no support for loading firmware)

Manufacturer Device Name
Meilhaus ME-4650 me4000

Meilhaus ME-4670i me4000

Meilhaus ME-4680 me4000

Meilhaus ME-4680i me4000

Meilhaus ME-4680is me4000

89

Comedi

- Analog Input
- Analog Output
- Digital I/O
- Counter

Configuration Options:

[0] - PCI bus number (optional)
[1] - PCI slot number (optional)

If bus/slot is not specified, the first available PCI
device will be used.

The firmware required by these boards is available in the
comedi_nonfree_firmware tarball available from

6.1.48. gsc_hpdi.o -- General Standards Corporation High Speed Parallel
Digital Interface rs485 boards

Author: Frank Mori Hess <fmhess@users.sourceforge.net>

Status: only receive mode works, transmit not supported

Manufacturer Device Name
General Standards Corporation PCI-HPDI32 gsc_hpdi

General Standards Corporation PMC-HPDI32 gsc_hpdi

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)

There are some additional hpdi models available from GSC for which
support could be added to this driver.

90

Comedi

6.1.49. icp_multi.o -- Inova ICP_MULTI

Author: Anne Smorthit <anne.smorthit@sfwte.ch>

Status: works

Manufacturer Device Name
Inova ICP_MULTI icp_multi

The driver works for analog input and output and digital input and output.
It does not work with interrupts or with the counters. Currently no support
for DMA.

It has 16 single-ended or 8 differential Analogue Input channels with 12-bit
resolution. Ranges : 5V, 10V, +/-5V, +/-10V, 0..20mA and 4..20mA. Input
ranges can be individually programmed for each channel. Voltage or current
measurement is selected by jumper.

There are 4 x 12-bit Analogue Outputs. Ranges : 5V, 10V, +/-5V, +/-10V

16 x Digital Inputs, 24V

8 x Digital Outputs, 24V, 1A

4 x 16-bit counters

6.1.50. ii_pci20kc.o -- Intelligent Instruments PCI-20001C carrier board

Author: Markus Kempf <kempf@matsci.uni-sb.de>

Status: works

Manufacturer Device Name
Intelligent Instrumentation PCI-20001C ii_pci20kc

Supports the PCI-20001 C-2a Carrier board, and could probably support
the other carrier boards with small modifications. Modules supported

options for PCI-20006M:

91

Comedi

first: Analog output channel 0 range configuration
0 bipolar 10 (-10V -- +10V)
1 unipolar 10 (0V -- +10V)
2 bipolar 5 (-5V -- 5V)

second: Analog output channel 1 range configuration

options for PCI-20341M:
first: Analog input gain configuration

0 1
1 10
2 100
3 200

6.1.51. ke_counter.o -- Driver for Kolter Electronic Counter Card

Author: Michael Hillmann

Status: tested

Manufacturer Device Name
Kolter Electronic PCI Counter Card ke_counter

This driver is a simple driver to read the counter values from
Kolter Electronic PCI Counter Card.

6.1.52. me_daq.o -- Meilhaus PCI data acquisition cards

Author: Michael Hillmann <hillmann@syscongroup.de>

Status: experimental

Manufacturer Device Name
Meilhaus ME-2600i me_daq

Meilhaus ME-2000i me_daq

92

Comedi

Analog Output

Configuration options:

[0] - PCI bus number (optional)
[1] - PCI slot number (optional)

If bus/slot is not specified, the first available PCI
device will be used.

The 2600 requires a firmware upload, which can be accomplished
using the -i or --init-data option of comedi_config.
The firmware can be
found in the comedi_nonfree_firmware tarball available
from http://www.comedi.org

6.1.53. mpc624.o -- Micro/sys MPC-624 PC/104 board

Author: Stanislaw Raczynski <sraczynski@op.pl>

Status: working

Manufacturer Device Name
Micro/sys MPC-624 mpc624

The Micro/sys MPC-624 board is based on the LTC2440 24-bit sigma-delta
ADC chip.

Subdevices supported by the driver:
- Analog In: supported
- Digital I/O: not supported
- LEDs: not supported
- EEPROM: not supported

Configuration Options:
[0] - I/O base address
[1] - convertion rate

Convertion rate RMS noise Effective Number Of Bits
0 3.52kHz 23uV 17
1 1.76kHz 3.5uV 20
2 880Hz 2uV 21.3
3 440Hz 1.4uV 21.8

93

Comedi

4 220Hz 1uV 22.4
5 110Hz 750uV 22.9
6 55Hz 510nV 23.4
7 27.5Hz 375nV 24
8 13.75Hz 250nV 24.4
9 6.875Hz 200nV 24.6

[2] - voltage range
0 -1.01V .. +1.01V
1 -10.1V .. +10.1V

6.1.54. mpc8260cpm.o -- MPC8260 CPM module generic digital I/O lines

Author: ds

Status: experimental

Manufacturer Device Name
Motorola MPC8260 CPM mpc8260cpm

This driver is specific to the Motorola MPC8260 processor, allowing
you to access the processor’s generic digital I/O lines.

It is apparently missing some code.

6.1.55. multiq3.o -- Quanser Consulting MultiQ-3

Author: Anders Blomdell <anders.blomdell@control.lth.se>

Status: works

Manufacturer Device Name
Quanser Consulting MultiQ-3 multiq3

94

Comedi

6.1.56. ni_6527.o -- National Instruments 6527

Author: ds

Status: works

Manufacturer Device Name
National Instruments PCI-6527 ni6527

National Instruments PXI-6527 ni6527

6.1.57. pcl711.o -- Advantech PCL-711 and 711b, ADLink ACL-8112

Author: ds, Janne Jalkanen <jalkanen@cs.hut.fi>, Eric Bunn <ebu@cs.hut.fi>

Status: mostly complete

Manufacturer Device Name
Advantech PCL-711 pcl711

Advantech PCL-711B pcl711b

AdLink ACL-8112HG acl8112hg

AdLink ACL-8112DG acl8112dg

Since these boards do not have DMA or FIFOs, only immediate mode is
supported.

95

Comedi

6.1.58. ni_660x.o -- National Instruments 660x counter/timer boards

Author: J.P. Mellor <jpmellor@rose-hulman.edu>, Herman.Bruyninckx@mech.kuleuven.ac.be,
Wim.Meeussen@mech.kuleuven.ac.be, Klaas.Gadeyne@mech.kuleuven.ac.be, Frank Mori Hess
<fmhess@users.sourceforge.net>

Status: experimental

Manufacturer Device Name
National Instruments PCI-6601 ni_660x

National Instruments PCI-6602 ni_660x

Encoders work, but only with instructions, commands are not
supported yet. PulseGeneration (both single pulse and pulse train)
works. DIO is experimental (8 channels only). Interrupts do not
work.

Things to do:
- Add commands (see ni_tio.c and ni_mio_common.c)

6.1.59. ni_670x.o -- National Instruments 670x

Author: Bart Joris <bjoris@advalvas.be>

Status: unknown

Manufacturer Device Name
National Instruments PCI-6703 ni_670x

National Instruments PCI-6704 ni_670x

Commands are not supported.

96

Comedi

6.1.60. ni_at_a2150.o -- National Instruments AT-A2150

Author: Frank Mori Hess

Status: works

Manufacturer Device Name
National Instruments AT-A2150C at_a2150c

National Instruments AT-2150S at_a2150s

If you want to ac couple the board’s inputs, use AREF_OTHER.

Configuration options:
[0] - I/O port base address
[1] - IRQ (optional, required for timed conversions)
[2] - DMA (optional, required for timed conversions)

6.1.61. ni_at_ao.o -- National Instruments AT-AO-6/10

Author: ds

Status: should work

Manufacturer Device Name
National Instruments AT-AO-6 at-ao-6

National Instruments AT-AO-10 at-ao-10

Configuration options:
[0] - I/O port base address
[1] - IRQ (unused)
[2] - DMA (unused)
[3] - analog output range, set by jumpers on hardware (0 for -10 to 10V bipolar, 1 for 0V to 10V unipolar)

97

Comedi

6.1.62. ni_atmio.o -- National Instruments AT-MIO-E series

Author: ds

Status: works

Manufacturer Device Name
National Instruments AT-MIO-16E-1 ni_atmio

National Instruments AT-MIO-16E-2 ni_atmio

National Instruments AT-MIO-16E-10 ni_atmio

National Instruments AT-MIO-16DE-10 ni_atmio

National Instruments AT-MIO-64E-3 ni_atmio

National Instruments AT-MIO-16XE-50 ni_atmio

National Instruments AT-MIO-16XE-10 ni_atmio

National Instruments AT-AI-16XE-10 ni_atmio

The driver has 2.6 kernel isapnp support, and
will automatically probe for a supported board if the
I/O base is left unspecified with comedi_config.
However, many of
the isapnp id numbers are unknown. If your board is not
recognized, please send the output of ’cat /proc/isapnp’
(you may need to modprobe the isa-pnp module for
/proc/isapnp to exist) so the
id numbers for your board can be added to the driver.

Otherwise, you can use the isapnptools package to configure
your board. Use isapnp to
configure the I/O base and IRQ for the board, and then pass
the same values as
parameters in comedi_config. A sample isapnp.conf file is included
in the etc/ directory of Comedilib.

Comedilib includes a utility to autocalibrate these boards. The
boards seem to boot into a state where the all calibration DACs
are at one extreme of their range, thus the default calibration
is terrible. Calibration at boot is strongly encouraged.

To use the extended digital I/O on some of the boards, enable the
8255 driver when configuring the Comedi source tree.

External triggering is supported for some events. The channel index
(scan_begin_arg, etc.) maps to PFI0 - PFI9.

Some of the more esoteric triggering possibilities of these boards
are not supported.

98

Comedi

6.1.63. ni_atmio16d.o -- National Instruments AT-MIO-16D

Author: Chris R. Baugher <baugher@enteract.com>

Status: unknown

Manufacturer Device Name
National Instruments AT-MIO-16 atmio16

National Instruments AT-MIO-16D atmio16d

6.1.64. ni_daq_dio24.o -- National Instruments PCMCIA DAQ-Card DIO-24

Author: Daniel Vecino Castel <dvecino@able.es>

Status: ?

Manufacturer Device Name
National Instruments PCMCIA DAQ-Card DIO-24 ni_daq_dio24

This is just a wrapper around the 8255.o driver to properly handle
the PCMCIA interface.

6.1.65. ni_labpc.o -- National Instruments Lab-PC (& compatibles)

Author: Frank Mori Hess <fmhess@users.sourceforge.net>

Status: works

99

Comedi

Manufacturer Device Name
National Instruments Lab-PC-1200 labpc-1200

National Instruments Lab-PC-1200AI labpc-1200ai

National Instruments Lab-PC+ lab-pc+

National Instruments PCI-1200 pci-1200

Tested with lab-pc-1200. For the older Lab-PC+, not all input ranges
and analog references will work, the available ranges/arefs will
depend on how you have configured the jumpers on your board
(see your owner’s manual).

Kernel-level ISA plug-and-play support for the lab-pc-1200
boards has not
yet been added to the driver, mainly due to the fact that
I don’t know the device id numbers. If you have one
of these boards,
please file a bug report at https://bugs.comedi.org/
so I can get the necessary information from you.

The 1200 series boards have onboard calibration dacs for correcting
analog input/output offsets and gains. The proper settings for these
caldacs are stored on the board’s eeprom. To read the caldac values
from the eeprom and store them into a file that can be then be used by
comedilib, use the comedi_calibrate program.

Configuration options - ISA boards:
[0] - I/O port base address
[1] - IRQ (optional, required for timed or externally triggered conversions)
[2] - DMA channel (optional)

Configuration options - PCI boards:
[0] - bus (optional)
[1] - slot (optional)

The Lab-pc+ has quirky chanlist requirements
when scanning multiple channels. Multiple channel scan
sequence must start at highest channel, then decrement down to
channel 0. The rest of the cards can scan down like lab-pc+ or scan
up from channel zero. Chanlists consisting of all one channel
are also legal, and allow you to pace conversions in bursts.

100

Comedi

6.1.66. ni_labpc_cs.o -- National Instruments Lab-PC (& compatibles)

Author: Frank Mori Hess <fmhess@users.sourceforge.net>

Status: works

Manufacturer Device Name
National Instruments DAQCard-1200 daqcard-1200

Thanks go to Fredrik Lingvall for much testing and perseverance in
helping to debug daqcard-1200 support.

The 1200 series boards have onboard calibration dacs for correcting
analog input/output offsets and gains. The proper settings for these
caldacs are stored on the board’s eeprom. To read the caldac values
from the eeprom and store them into a file that can be then be used by
comedilib, use the comedi_calibrate program.

Configuration options:
none

The daqcard-1200 has quirky chanlist requirements
when scanning multiple channels. Multiple channel scan
sequence must start at highest channel, then decrement down to
channel 0. Chanlists consisting of all one channel
are also legal, and allow you to pace conversions in bursts.

6.1.67. ni_mio_cs.o -- National Instruments DAQCard E series

Author: ds

Status: works

Manufacturer Device Name
National Instruments DAQCard-AI-16XE-50 ni_mio_cs

National Instruments DAQCard-AI-16E-4 ni_mio_cs

National Instruments DAQCard-6062E ni_mio_cs

National Instruments DAQCard-6024E ni_mio_cs

National Instruments DAQCard-6036E ni_mio_cs

101

Comedi

See the notes in the ni_atmio.o driver.

6.1.68. ni_pcidio.o -- National Instruments PCI-DIO32HS, PCI-DIO96,
PCI-6533, PCI-6503

Author: ds

Status: works

Manufacturer Device Name
National Instruments PCI-DIO-32HS ni_pcidio

National Instruments PXI-6533 ni_pcidio

National Instruments PCI-DIO-96 ni_pcidio

National Instruments PCI-DIO-96B ni_pcidio

National Instruments PXI-6508 ni_pcidio

National Instruments PCI-6503 ni_pcidio

National Instruments PCI-6503B ni_pcidio

National Instruments PCI-6503X ni_pcidio

National Instruments PXI-6503 ni_pcidio

National Instruments PCI-6533 ni_pcidio

National Instruments PCI-6534 ni_pcidio

The DIO-96 appears as four 8255 subdevices. See the 8255
driver notes for details.

The DIO32HS board appears as one subdevice, with 32 channels.
Each channel is individually I/O configurable. The channel order
is 0=A0, 1=A1, 2=A2, ... 8=B0, 16=C0, 24=D0. The driver only
supports simple digital I/O; no handshaking is supported.

DMA mostly works for the PCI-DIO32HS, but only in timed input mode.

This driver could be easily modified to support AT-MIO32HS and
AT-MIO96.

The PCI-6534 requires a firmware upload after power-up to work, the
firmware data and instructions for loading it with comedi_config
it are contained in the
comedi_nonfree_firmware tarball available from http://www.comedi.org

102

Comedi

6.1.69. s526.ko -- Sensoray 526 driver

Author: Richie Everett Wang <everett.wang@everteq.com>

Status: experimental

Manufacturer Device Name
National Instruments Sensoray s526 ni_pcidio

Encoder works
Analog input works
Analog output works
PWM output works
Commands are not supported yet.

Configuration Options:

comedi_config /dev/comedi0 s526 0x2C0,0x3

6.1.70. ni_pcimio.o -- National Instruments PCI-MIO-E series and M series
(all boards)

Author: ds, John Hallen, Frank Mori Hess, Rolf Mueller, Herbert Peremans, Herman Bruyninckx, Terry
Barnaby

Status: works

Manufacturer Device Name
National Instruments PCI-MIO-16XE-50 ni_pcimio

National Instruments PCI-MIO-16XE-10 ni_pcimio

National Instruments PXI-6030E ni_pcimio

National Instruments PCI-MIO-16E-1 ni_pcimio

National Instruments PCI-MIO-16E-4 ni_pcimio

103

Comedi

Manufacturer Device Name
National Instruments PCI-6014 ni_pcimio

National Instruments PCI-6040E ni_pcimio

National Instruments PXI-6040E ni_pcimio

National Instruments PCI-6030E ni_pcimio

National Instruments PCI-6031E ni_pcimio

National Instruments PCI-6032E ni_pcimio

National Instruments PCI-6033E ni_pcimio

National Instruments PCI-6071E ni_pcimio

National Instruments PCI-6023E ni_pcimio

National Instruments PCI-6024E ni_pcimio

National Instruments PCI-6025E ni_pcimio

National Instruments PXI-6025E ni_pcimio

National Instruments PCI-6034E ni_pcimio

National Instruments PCI-6035E ni_pcimio

National Instruments PCI-6052E ni_pcimio

National Instruments PCI-6110 ni_pcimio

National Instruments PCI-6111 ni_pcimio

National Instruments PCI-6220 ni_pcimio

National Instruments PCI-6221 ni_pcimio

National Instruments PCI-6224 ni_pcimio

National Instruments PCI-6225 ni_pcimio

National Instruments PCI-6229 ni_pcimio

National Instruments PCI-6250 ni_pcimio

National Instruments PCI-6251 ni_pcimio

National Instruments PCIe-6251 ni_pcimio

National Instruments PCI-6254 ni_pcimio

National Instruments PCI-6259 ni_pcimio

National Instruments PCIe-6259 ni_pcimio

National Instruments PCI-6280 ni_pcimio

National Instruments PCI-6281 ni_pcimio

National Instruments PXI-6281 ni_pcimio

National Instruments PCI-6284 ni_pcimio

National Instruments PCI-6289 ni_pcimio

National Instruments PCI-6711 ni_pcimio

National Instruments PXI-6711 ni_pcimio

National Instruments PCI-6713 ni_pcimio

National Instruments PXI-6713 ni_pcimio

National Instruments PXI-6071E ni_pcimio

National Instruments PCI-6070E ni_pcimio

104

Comedi

Manufacturer Device Name
National Instruments PXI-6070E ni_pcimio

National Instruments PXI-6052E ni_pcimio

National Instruments PCI-6036E ni_pcimio

National Instruments PCI-6731 ni_pcimio

National Instruments PCI-6733 ni_pcimio

National Instruments PXI-6733 ni_pcimio

National Instruments PCI-6143 ni_pcimio

National Instruments PXI-6143 ni_pcimio

These boards are almost identical to the AT-MIO E series, except that
they use the PCI bus instead of ISA (i.e., AT). See the notes for
the ni_atmio.o driver for additional information about these boards.

Autocalibration is supported on many of the devices, using the
comedi_calibrate (or comedi_soft_calibrate for m-series) utility.
M-Series boards do analog input and analog output calibration entirely
in software. The software calibration corrects
the analog input for offset, gain and
nonlinearity. The analog outputs are corrected for offset and gain.
See the comedilib documentation on comedi_get_softcal_converter() for
more information.

By default, the driver uses DMA to transfer analog input data to
memory. When DMA is enabled, not all triggering features are
supported.

Digital I/O may not work on 673x.

Note that the PCI-6143 is a simultaineous sampling device with 8 convertors.
With this board all of the convertors perform one simultaineous sample during
a scan interval. The period for a scan is used for the convert time in a
Comedi cmd. The convert trigger source is normally set to TRIG_NOW by default.

The RTSI trigger bus is supported on these cards on
subdevice 10. See the comedilib documentation for details.

Information (number of channels, bits, etc.) for some devices may be
incorrect. Please check this and submit a bug if there are problems
for your device.

SCXI is probably broken for m-series boards.

105

Comedi

6.1.71. pcl724.o -- Advantech PCL-724, PCL-722, PCL-731 ADLink
ACL-7122, ACL-7124, PET-48DIO

Author: Michal Dobes <dobes@tesnet.cz>

Status: untested

Manufacturer Device Name
Advantech PCL-724 pcl724

Advantech PCL-722 pcl722

Advantech PCL-731 pcl731

ADLink ACL-7122 acl7122

ADLink ACL-7124 acl7124

ADLink PET-48DIO pet48dio

This is driver for digital I/O boards PCL-722/724/731 with 144/24/48 DIO
and for digital I/O boards ACL-7122/7124/PET-48DIO with 144/24/48 DIO.
It need 8255.o for operations and only immediate mode is supported.
See the source for configuration details.

6.1.72. pcl726.o -- Advantech PCL-726 & compatibles

Author: ds

Status: untested

Manufacturer Device Name
Advantech PCL-726 pcl726

Advantech PCL-727 pcl727

Advantech PCL-728 pcl728

ADLink ACL-6126 acl6126

ADLink ACL-6128 acl6128

Interrupts are not supported.

Options for PCL-726:
[0] - IO Base
[2]...[7] - D/A output range for channel 1-6:

106

Comedi

0: 0-5V, 1: 0-10V, 2: +/-5V, 3: +/-10V,
4: 4-20mA, 5: unknown (external reference)

Options for PCL-727:
[0] - IO Base
[2]...[13] - D/A output range for channel 1-12:

0: 0-5V, 1: 0-10V, 2: +/-5V,
3: 4-20mA

Options for PCL-728 and ACL-6128:
[0] - IO Base
[2], [3] - D/A output range for channel 1 and 2:

0: 0-5V, 1: 0-10V, 2: +/-5V, 3: +/-10V,
4: 4-20mA, 5: 0-20mA

Options for ACL-6126:
[0] - IO Base
[1] - IRQ (0=disable, 3, 5, 6, 7, 9, 10, 11, 12, 15) (currently ignored)
[2]...[7] - D/A output range for channel 1-6:

0: 0-5V, 1: 0-10V, 2: +/-5V, 3: +/-10V,
4: 4-20mA

6.1.73. pcl725.o -- Advantech PCL-725 (& compatibles)

Author: ds

Status: unknown

Manufacturer Device Name
Advantech PCL-725 pcl725

6.1.74. pcl730.o -- Advantech PCL-730 (& compatibles)

Author: JosÃ© Luis SÃ¡nchez (jsanchezv@teleline.es)

Status: untested

107

Comedi

Manufacturer Device Name
Advantech PCL-730 pcl730

ICP ISO-730 iso730

ICP [Adlink] ACL-7130 acl7130

Interrupts are not supported.
The ACL-7130 card have an 8254 timer/counter not supported by this driver.

6.1.75. pcl812.o -- Advantech PCL-812/PG, PCL-813/B, ADLink
ACL-8112DG/HG/PG, ACL-8113, ACL-8216, ICP DAS
A-821PGH/PGL/PGL-NDA, A-822PGH/PGL, A-823PGH/PGL, A-826PG, ICP
DAS ISO-813

Author: Michal Dobes <dobes@tesnet.cz>

Status: works (I hope. My board fire up under my hands and I cann’t test all features.)

Manufacturer Device Name
Advantech PCL-812 pcl812

Advantech PCL-812PG pcl812pg

Advantech PCL-813 pcl813

Advantech PCL-813B pcl813b

ADLink ACL-8112DG acl8112dg

ADLink ACL-8112HG acl8112hg

ADLink ACL-8113 acl-8113

ADLink ACL-8216 acl8216

ICP ISO-813 iso813

ICP A-821PGH a821pgh

ICP A-821PGL a821pgl

ICP A-821PGL-NDA a821pclnda

ICP A-822PGH a822pgh

ICP A-822PGL a822pgl

ICP A-823PGH a823pgh

ICP A-823PGL a823pgl

ICP A-826PG a826pg

This driver supports insn and cmd interfaces. Some boards support only insn

108

Comedi

becouse their hardware don’t allow more (PCL-813/B, ACL-8113, ISO-813).
Data transfer over DMA is supported only when you measure only one
channel, this is too hardware limitation of these boards.
See the head of the source file pcl812.c for configuration options.

6.1.76. pcl816.o -- Advantech PCL-816 cards, PCL-814

Author: Juan Grigera <juan@grigera.com.ar>

Status: works

Manufacturer Device Name
Advantech PCL-816 pcl816

Advantech PCL-814B pcl814b

PCL 816 and 814B have 16 SE/DIFF ADCs, 16 DACs, 16 DI and 16 DO.
Differences are at resolution (16 vs 12 bits).

The driver support AI command mode, other subdevices not written.

Analog output and digital input and output are not supported.

Configuration Options:
[0] - IO Base
[1] - IRQ (0=disable, 2, 3, 4, 5, 6, 7)
[2] - DMA (0=disable, 1, 3)
[3] - 0, 10=10MHz clock for 8254

1= 1MHz clock for 8254

6.1.77. pcl818.o -- Advantech PCL-818 cards, PCL-718

Author: Michal Dobes <dobes@tesnet.cz>

Status: works

109

Comedi

Manufacturer Device Name
Advantech PCL-818L pcl818l

Advantech PCL-818H pcl818h

Advantech PCL-818HD pcl818hd

Advantech PCL-818HG pcl818hg

Advantech PCL-818 pcl818

Advantech PCL-718 pcl718

All cards have 16 SE/8 DIFF ADCs, one or two DACs, 16 DI and 16 DO.
Differences are only at maximal sample speed, range list and FIFO
support.
The driver support AI mode 0, 1, 3 other subdevices (AO, DI, DO) support
only mode 0. If DMA/FIFO/INT are disabled then AI support only mode 0.
PCL-818HD and PCL-818HG support 1kword FIFO. Driver support this FIFO
but this code is untested.
A word or two about DMA. Driver support DMA operations at two ways:
1) DMA uses two buffers and after one is filled then is generated

INT and DMA restart with second buffer. With this mode I’m unable run
more that 80Ksamples/secs without data dropouts on K6/233.

2) DMA uses one buffer and run in autoinit mode and the data are
from DMA buffer moved on the fly with 2kHz interrupts from RTC.
This mode is used if the interrupt 8 is available for allocation.
If not, then first DMA mode is used. With this I can run at
full speed one card (100ksamples/secs) or two cards with
60ksamples/secs each (more is problem on account of ISA limitations).
To use this mode you must have compiled kernel with disabled
"Enhanced Real Time Clock Support".
Maybe you can have problems if you use xntpd or similar.
If you’ve data dropouts with DMA mode 2 then:
a) disable IDE DMA
b) switch text mode console to fb.

Options for PCL-818L:
[0] - IO Base
[1] - IRQ (0=disable, 2, 3, 4, 5, 6, 7)
[2] - DMA (0=disable, 1, 3)
[3] - 0, 10=10MHz clock for 8254

1= 1MHz clock for 8254
[4] - 0, 5=A/D input -5V.. +5V

1, 10=A/D input -10V..+10V
[5] - 0, 5=D/A output 0-5V (internal reference -5V)

1, 10=D/A output 0-10V (internal reference -10V)
2 =D/A output unknow (external reference)

Options for PCL-818, PCL-818H:
[0] - IO Base
[1] - IRQ (0=disable, 2, 3, 4, 5, 6, 7)
[2] - DMA (0=disable, 1, 3)
[3] - 0, 10=10MHz clock for 8254

1= 1MHz clock for 8254

110

Comedi

[4] - 0, 5=D/A output 0-5V (internal reference -5V)
1, 10=D/A output 0-10V (internal reference -10V)

2 =D/A output unknow (external reference)

Options for PCL-818HD, PCL-818HG:
[0] - IO Base
[1] - IRQ (0=disable, 2, 3, 4, 5, 6, 7)
[2] - DMA/FIFO (-1=use FIFO, 0=disable both FIFO and DMA,

1=use DMA ch 1, 3=use DMA ch 3)
[3] - 0, 10=10MHz clock for 8254

1= 1MHz clock for 8254
[4] - 0, 5=D/A output 0-5V (internal reference -5V)

1, 10=D/A output 0-10V (internal reference -10V)
2 =D/A output unknow (external reference)

Options for PCL-718:
[0] - IO Base
[1] - IRQ (0=disable, 2, 3, 4, 5, 6, 7)
[2] - DMA (0=disable, 1, 3)
[3] - 0, 10=10MHz clock for 8254

1= 1MHz clock for 8254
[4] - 0=A/D Range is +/-10V

1= +/-5V
2= +/-2.5V
3= +/-1V
4= +/-0.5V
5= user defined bipolar
6= 0-10V
7= 0-5V
8= 0-2V
9= 0-1V
10= user defined unipolar

[5] - 0, 5=D/A outputs 0-5V (internal reference -5V)
1, 10=D/A outputs 0-10V (internal reference -10V)

2=D/A outputs unknow (external reference)
[6] - 0, 60=max 60kHz A/D sampling

1,100=max 100kHz A/D sampling (PCL-718 with Option 001 installed)

6.1.78. pcm3724.o -- Advantech PCM-3724

Author: Drew Csillag <drew_csillag@yahoo.com>

Status: tested

111

Comedi

Manufacturer Device Name
Advantech PCM-3724 pcm724

This is driver for digital I/O boards PCM-3724 with 48 DIO.
It needs 8255.o for operations and only immediate mode is supported.
See the source for configuration details.

Copy/pasted/hacked from pcm724.c

6.1.79. pcm3730.o -- PCM3730

Author: Blaine Lee

Status: unknown

Manufacturer Device Name
Advantech PCM-3730 pcm3730

Configuration options:
[0] - I/O port base

6.1.80. pcmad.o -- Winsystems PCM-A/D12, PCM-A/D16

Author: ds

Status: untested

Manufacturer Device Name
Winsystems PCM-A/D12 pcmad12

Winsystems PCM-A/D16 pcmad16

This driver was written on a bet that I couldn’t write a driver
in less than 2 hours. I won the bet, but never got paid. =(

112

Comedi

Configuration options:
[0] - I/O port base
[1] - unused
[2] - Analog input reference

0 = single ended
1 = differential

[3] - Analog input encoding (must match jumpers)
0 = straight binary
1 = two’s complement

6.1.81. pcmda12.o -- A driver for the Winsystems PCM-D/A-12

Author: Calin Culianu <calin@ajvar.org>

Status: works

Manufacturer Device Name
Winsystems PCM-D/A-12 pcmda12

A driver for the relatively straightforward-to-program PCM-D/A-12.
This board doesn’t support commands, and the only way to set its
analog output range is to jumper the board. As such,
comedi_data_write() ignores the range value specified.

The board uses 16 consecutive I/O addresses starting at the I/O port
base address. Each address corresponds to the LSB then MSB of a
particular channel from 0-7.

Note that the board is not ISA-PNP capable and thus
needs the I/O port comedi_config parameter.

Note that passing a nonzero value as the second config option will
enable "simultaneous xfer" mode for this board, in which AO writes
will not take effect until a subsequent read of any AO channel. This
is so that one can speed up programming by preloading all AO registers
with values before simultaneously setting them to take effect with one
read command.

Configuration Options:
[0] - I/O port base address
[1] - Do Simultaneous Xfer (see description)

113

Comedi

6.1.82. pcmuio.o -- A driver for the PCM-UIO48A and PCM-UIO96A boards
from Winsystems.

Author: Calin Culianu <calin@ajvar.org>

Status: works

Manufacturer Device Name
Winsystems PCM-UIO48A pcmuio48

Winsystems PCM-UIO96A pcmuio96

A driver for the relatively straightforward-to-program PCM-UIO48A and
PCM-UIO96A boards from Winsystems. These boards use either one or two
(in the 96-DIO version) WS16C48 ASIC HighDensity I/O Chips (HDIO).
This chip is interesting in that each I/O line is individually
programmable for INPUT or OUTPUT (thus comedi_dio_config can be done
on a per-channel basis). Also, each chip supports edge-triggered
interrupts for the first 24 I/O lines. Of course, since the
96-channel version of the board has two ASICs, it can detect polarity
changes on up to 48 I/O lines. Since this is essentially an (non-PnP)
ISA board, I/O Address and IRQ selection are done through jumpers on
the board. You need to pass that information to this driver as the
first and second comedi_config option, respectively. Note that the
48-channel version uses 16 bytes of IO memory and the 96-channel
version uses 32-bytes (in case you are worried about conflicts). The
48-channel board is split into two 24-channel comedi subdevices.
The 96-channel board is split into 4 24-channel DIO subdevices.

Note that IRQ support has been added, but it is untested.

To use edge-detection IRQ support, pass the IRQs of both ASICS
(for the 96 channel version) or just 1 ASIC (for 48-channel version).
Then, use use comedi_commands with TRIG_NOW.
Your callback will be called each time an edge is triggered, and the data
values will be two sample_t’s, which should be concatenated to form one
32-bit unsigned int. This value is the mask of channels that had
edges detected from your channel list. Note that the bits positions
in the mask correspond to positions in your chanlist when you specified
the command and *not* channel id’s!

To set the polarity of the edge-detection interrupts pass a nonzero value for
either CR_RANGE or CR_AREF for edge-up polarity, or a zero value for both
CR_RANGE and CR_AREF if you want edge-down polarity.

In the 48-channel version:

114

Comedi

On subdev 0, the first 24 channels channels are edge-detect channels.

In the 96-channel board you have the collowing channels that can do edge detection:

subdev 0, channels 0-24 (first 24 channels of 1st ASIC)
subdev 2, channels 0-24 (first 24 channels of 2nd ASIC)

Configuration Options:
[0] - I/O port base address
[1] - IRQ (for first ASIC, or first 24 channels)
[2] - IRQ for second ASIC (pcmuio96 only - IRQ for chans 48-72 .. can be the same as first irq!)

6.1.83. poc.o -- Generic driver for very simple devices

Author: ds

Status: unknown

Manufacturer Device Name
Keithley Metrabyte DAC-02 dac02

Advantech PCL-733 pcl733

Advantech PCL-734 pcl734

This driver is indended to support very simple ISA-based devices,

Configuration options:
[0] - I/O port base

6.1.84. quatech_daqp_cs.o -- Quatech DAQP PCMCIA data capture cards

Author: Brent Baccala <baccala@freesoft.org>

Status: works

Manufacturer Device Name

115

Comedi

Manufacturer Device Name
Quatech DAQP-208 daqp

Quatech DAQP-308 daqp

6.1.85. rtd520.o -- Real Time Devices PCI4520/DM7520

Author: Dan Christian

Status: Works. Only tested on DM7520-8. Not SMP safe.

Manufacturer Device Name
Real Time Devices DM7520HR-1 DM7520

Real Time Devices DM7520HR-8 DM7520-8

Real Time Devices PCI4520 PCI4520

Real Time Devices PCI4520-8 PCI4520-8

Configuration options:
[0] - PCI bus of device (optional)

If bus/slot is not specified, the first available PCI
device will be used.

[1] - PCI slot of device (optional)

6.1.86. rti800.o -- Analog Devices RTI-800/815

Author: ds

Status: unknown

Manufacturer Device Name
Analog Devices RTI-800 rti800

Analog Devices RTI-815 rti815

Configuration options:

116

Comedi

[0] - I/O port base address
[1] - IRQ
[2] - A/D reference

0 = differential
1 = pseudodifferential (common)
2 = single-ended

[3] - A/D range
0 = [-10,10]
1 = [-5,5]
2 = [0,10]

[4] - A/D encoding
0 = two’s complement
1 = straight binary

[5] - DAC 0 range
0 = [-10,10]
1 = [0,10]

[5] - DAC 0 encoding
0 = two’s complement
1 = straight binary

[6] - DAC 1 range (same as DAC 0)
[7] - DAC 1 encoding (same as DAC 0)

6.1.87. rti802.o -- Analog Devices RTI-802

Author: Anders Blomdell <anders.blomdell@control.lth.se>

Status: works

Manufacturer Device Name
Analog Devices RTI-802 rti802

Configuration Options:
[0] - i/o base
[1] - unused
[2] - dac#0 0=two’s comp, 1=straight
[3] - dac#0 0=bipolar, 1=unipolar
[4] - dac#1 ...
...
[17] - dac#7 ...

117

Comedi

6.1.88. s626.o (s626.ko) -- Sensoray 626 driver

Author: Anders Blomdell <anders.blomdell@control.lth.se>

Status: experimental

Manufacturer Device Name
Analog Devices Sensoray s626 rti802

Configuration Options:
analog input:
none

analog output:
none

digital channel:
s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
supported configuration options:
INSN_CONFIG_DIO_QUERY
COMEDI_INPUT
COMEDI_OUTPUT

encoder:
Every channel must be configured before reading.

Example code

insn.insn=INSN_CONFIG; //configuration instruction
insn.n=1; //number of operation (must be 1)
insn.data=&initialvalue; //initial value loaded into encoder

//during configuration
insn.subdev=5; //encoder subdevice
insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel

//to configure

comedi_do_insn(cf,&insn); //executing configuration

6.1.89. serial2002.o -- Driver for serial connected hardware

Author: Anders Blomdell

118

Comedi

Status: in development

6.1.90. skel.o -- Skeleton driver, an example for driver writers

Author: ds

Status: works

This driver is a documented example on how Comedi drivers are
written.

Configuration Options:
none

6.1.91. ssv_dnp.o -- SSV Embedded Systems DIL/Net-PC

Author: Robert Schwebel <robert@schwebel.de>

Status: unknown

Manufacturer Device Name
SSV Embedded Systems DIL/Net-PC 1486 dnp-1486

6.1.92. usbdux.c -- University of Stirling USB DAQ & INCITE Technology
Limited

Author: Bernd Porr <BerndPorr@f2s.com>

119

Comedi

Status: Stable Configuration options: You have to upload firmware with the -i option. The firmware is
usually installed under /usr/share/usb or /usr/local/share/usb.

Manufacturer Device Name
ITL USB-DUX usbdux.o

Connection scheme for the counter at the digital port:
0=/CLK0, 1=UP/DOWN0, 2=RESET0, 4=/CLK1, 5=UP/DOWN1, 6=RESET1.
The sampling rate of the counter is approximately 500Hz.

Please note that under USB2.0 the length of the channel list determines
the max sampling rate. If you sample only one channel you get 8kHz
sampling rate. If you sample two channels you get 4kHz and so on.

6.1.93. usbduxfast.c -- ITL USB-DUXfast

Author: Bernd Porr <BerndPorr@f2s.com>

Status: testing

Manufacturer Device Name
ITL USB-DUX usbduxfast.o

6.1.94. unioxx5.o -- Driver for Fastwel UNIOxx-5 (analog and digital i/o)
boards.

Author: Kruchinin Daniil (asgard) <asgard@etersoft.ru>

Status: unknown

Manufacturer Device Name
Fastwel UNIOxx-5 unioxx5

Fastwel UNIOxx-5 unioxx5

120

Comedi

This card supports digital and analog I/O. It written for g01
subdevices only.
channels range: 0 .. 23 dio channels
and 0 .. 11 analog modules range
During attaching unioxx5 module displays modules identifiers
(see dmesg after comedi_config) in format:
| [module_number] module_id |

6.1.95. adl_pci7296.o -- Driver for the Adlink PCI-7296 96 ch. digital io
board

Author: Jon Grierson <jd@renko.co.uk>

Status: testing

Manufacturer Device Name
ADLink PCI-7296 pci7296

Configuration Options:
none

6.1.96. pcmmio.o -- A driver for the PCM-MIO multifunction board

Author: Calin Culianu <calin@ajvar.org>

Status: works

Manufacturer Device Name
Winsystems PCM-MIO pcmmio

A driver for the relatively new PCM-MIO multifunction board from
Winsystems. This board is a PC-104 based I/O board. It contains
four subdevices:
subdevice 0 - 16 channels of 16-bit AI

121

Comedi

subdevice 1 - 8 channels of 16-bit AO
subdevice 2 - first 24 channels of the 48 channel of DIO (with edge-triggered interrupt support)
subdevice 3 - last 24 channels of the 48 channel DIO (no interrupt support for this bank of channels)

Some notes:

Synchronous reads and writes are the only things implemented for AI and AO,
even though the hardware itself can do streaming acquisition, etc. Anyone
want to add asynchronous I/O for AI/AO as a feature? Be my guest...

Asynchronous I/O for the DIO subdevices *is* implemented, however! They are
basically edge-triggered interrupts for any configuration of the first
24 DIO-lines.

Also note that this interrupt support is untested.

A few words about edge-detection IRQ support (commands on DIO):

* To use edge-detection IRQ support for the DIO subdevice, pass the IRQ
of the board to the comedi_config command. The board IRQ is not jumpered
but rather configured through software, so any IRQ from 1-15 is OK.

* Due to the genericity of the comedi API, you need to create a special
comedi_command in order to use edge-triggered interrupts for DIO.

* Use comedi_commands with TRIG_NOW. Your callback will be called each
time an edge is detected on the specified DIO line(s), and the data
values will be two sample_t’s, which should be concatenated to form
one 32-bit unsigned int. This value is the mask of channels that had
edges detected from your channel list. Note that the bits positions
in the mask correspond to positions in your chanlist when you
specified the command and *not* channel id’s!

* To set the polarity of the edge-detection interrupts pass a nonzero value
for either CR_RANGE or CR_AREF for edge-up polarity, or a zero
value for both CR_RANGE and CR_AREF if you want edge-down polarity.

Configuration Options:
[0] - I/O port base address
[1] - IRQ (optional -- for edge-detect interrupt support only, leave out if you don’t need this feature)

122

Comedi

6.1.97. ni_65xx.o -- National Instruments 65xx static dio boards

Author: Jon Grierson <jd@renko.co.uk>, Frank Mori Hess <fmhess@users.sourceforge.net>

Status: testing

Manufacturer Device Name
National Instruments PCI-6509 ni_65xx

National Instruments PXI-6509 ni_65xx

National Instruments PCI-6510 ni_65xx

National Instruments PCI-6511 ni_65xx

National Instruments PXI-6511 ni_65xx

National Instruments PCI-6512 ni_65xx

National Instruments PXI-6512 ni_65xx

National Instruments PCI-6513 ni_65xx

National Instruments PXI-6513 ni_65xx

National Instruments PCI-6514 ni_65xx

National Instruments PXI-6514 ni_65xx

National Instruments PCI-6515 ni_65xx

National Instruments PXI-6515 ni_65xx

National Instruments PCI-6516 ni_65xx

National Instruments PCI-6517 ni_65xx

National Instruments PCI-6518 ni_65xx

National Instruments PCI-6519 ni_65xx

National Instruments PCI-6520 ni_65xx

National Instruments PCI-6521 ni_65xx

National Instruments PXI-6521 ni_65xx

National Instruments PCI-6528 ni_65xx

National Instruments PXI-6528 ni_65xx

Based on the PCI-6527 driver by ds.
The interrupt subdevice (subdevice 3) is probably broken for all boards
except maybe the 6514.

6.1.98. ni_tio.o -- National Instruments general purpose counters

Author: J.P. Mellor <jpmellor@rose-hulman.edu>, Herman.Bruyninckx@mech.kuleuven.ac.be,

123

Comedi

Wim.Meeussen@mech.kuleuven.ac.be, Klaas.Gadeyne@mech.kuleuven.ac.be, Frank Mori Hess
<fmhess@users.sourceforge.net>

Status: experimental

This module is not used directly by end-users. Rather, it
is used by other drivers (for example ni_660x and ni_pcimio)
to provide support for NI’s general purpose counters. It was
originally based on the counter code from ni_660x.c and
ni_mio_common.c.

6.1.99. jr3_pci.o -- JR3/PCI force sensor board

Author: Anders Blomdell <anders.blomdell@control.lth.se>

Status: works

Manufacturer Device Name
JR3 PCI force sensor board jr3_pci

The DSP on the board requires initialization code, which can
be loaded by placing it in /lib/firmware/comedi.
The initialization code should be somewhere on the media you got
with your card. One version is available from http://www.comedi.org
in the comedi_nonfree_firmware tarball.

Configuration options:
[0] - PCI bus number - if bus number and slot number are 0,

then driver search for first unused card
[1] - PCI slot number

124

Comedi

6.1.100. cb_pcidio.o -- ComputerBoards’ DIO boards with PCI interface

Author: Yoshiya Matsuzaka

Status: experimental

Manufacturer Device Name
Measurement Computing PCI-DIO24H jr3_pci

Measurement Computing PCI-DIO48H jr3_pci

This driver has been modified from skel.c of comedi-0.7.70.

Configuration Options:
none

7. Comedi Reference

Reference for constants and macros, data types and structures, and functions.

7.1. Headerfiles: comedi.h and comedilib.h

All application programs must include the header file comedilib.h. (This file itself includes
comedi.h.) They contain the full interface of Comedi: defines, function prototypes, data structures.

The following Sections give more details.

7.2. Constants and Macros

7.2.1. CR_PACK

CR_PACK is used to initialize the elements of the chanlist array in the comedi_cmd data structure,
and the chanspec member of the comedi_insn structure.

125

Comedi

#define CR_PACK(chan,rng,aref) ((((aref)&0x3)<<24) | (((rng)&0xff)<<16) | (chan))

The chan argument is the channel you wish to use, with the channel numbering starting at zero.

The range rng is an index, starting at zero, whose meaning is device dependent. The
comedi_get_n_ranges() and comedi_get_range() functions are useful in discovering information about
the available ranges.

The aref argument indicates what reference you want the device to use. It can be any of the following:

AREF_GROUND

is for inputs/outputs referenced to ground.

AREF_COMMON

is for a “common” reference (the low inputs of all the channels are tied together, but are isolated
from ground).

AREF_DIFF

is for differential inputs/outputs.

AREF_OTHER

is for any reference that does not fit into the above categories.

Particular drivers may or may not use the AREF flags. If they are not supported, they are silently ignored.

7.2.2. RANGE_LENGTH (deprecated)

Rangetype values are library-internal tokens that represent an array of range information structures.
These numbers are primarily used for communication between the kernel and library.

The RANGE_LENGTH() macro returns the length of the array that is specified by the rangetype token.

The RANGE_LENGTH() macro is deprecated, and should not be used in new applications. It is
scheduled to be removed from the header file at version 1.0. Binary compatibility may be broken for
version 1.1.

7.2.3. enum comedi_conversion_direction

enum comedi_conversion_direction
{
COMEDI_TO_PHYSICAL,
COMEDI_FROM_PHYSICAL

126

Comedi

};

A comedi_conversion_direction is used to choose between converting data from Comedi’s integer
sample values to a physical value (COMEDI_TO_PHYSICAL), and converting from a physical value to
Comedi’s integer sample values (COMEDI_FROM_PHYSICAL).

7.3. Data Types and Structures

This Section explains the data structures that users of the Comedi API are confronted with:

typedef struct subdevice_struct subdevice_struct:
typedef struct comedi_devinfo_struct comedi_devinfo;
typedef struct comedi_t_struct comedi_t;
typedef struct sampl_t_struct sampl_t;
typedef struct lsampl_t_struct lsampl_t;
typedef struct comedi_sv_t_struct comedi_sv_t;
typedef struct comedi_cmd_struct comedi_cmd;
typedef struct comedi_insn_struct comedi_insn;
typedef struct comedi_range_struct comedi_range;
typedef struct comedi_krange_struct comedi_krange;
typedef struct comedi_insnlist_struct comedi_insnlist;

The data structures used in the implementation of the Comedi drivers are treated elsewhere.

7.3.1. subdevice_struct

The data type subdevice_struct is used to store information about a subdevice. This structure is
usually filled in automatically when the driver is loaded (“attached”), so programmers need not access
this data structure directly.

typedef struct subdevice_struct subdevice;

struct subdevice_struct{
unsigned int type;
unsigned int n_chan;
unsigned int subd_flags;
unsigned int timer_type;
unsigned int len_chanlist;
lsampl_t maxdata;
unsigned int flags;
unsigned int range_type;

lsampl_t *maxdata_list;
unsigned int *range_type_list;
unsigned int *flags_list;

127

Comedi

comedi_range *rangeinfo;
ccomedi_range **rangeinfo_list;

unsigned int has_cmd;
unsigned int has_insn_bits;

int cmd_mask_errno;
comedi_cmd *cmd_mask;
int cmd_timed_errno;
comedi_cmd *cmd_timed;

};

7.3.2. comedi_devinfo

The data type comedi_devinfo is used to store information about a device. This structure is usually
filled in automatically when the driver is loaded (“attached”), so programmers need not access this data
structure directly.

typedef struct comedi_devinfo_struct comedi_devinfo;

struct comedi_devinfo_struct{
unsigned int version_code; // version number of the Comedi code
unsigned int n_subdevs; // number of subdevices on this device
char driver_name[COMEDI_NAMELEN];
char board_name[COMEDI_NAMELEN];
int read_subdevice; // index of subdevice whose buffer is read by read(), etc. on file descriptor from comedi_fileno() (negative means none)
int write_subdevice; // index of subdevice whose buffer is written by write(), etc. on file descriptor from comedi_fileno() (negatove means none).
int unused[30];

};

7.3.3. comedi_t

The data type comedi_t is used to represent an open Comedi device:

typedef struct comedi_t_struct comedi_t;

struct comedi_t_struct{
int magic; // driver-specific magic number, for identification
int fd; // file descriptor, for open() and close()
int n_subdevices; // number of subdevices on this device
comedi_devinfo devinfo;
subdevice *subdevices; // pointer to subdevice list

// filled in automatically at load time
unsigned int has_insnlist_ioctl; // can process instruction lists

128

Comedi

unsigned int has_insn_ioctl; // can process instructions
};

A valid comedi_t pointer is returned by a successful call to comedi_open(), and should be used for
subsequent access to the device. It is a transparent type, and pointers to type comedi_t should not be
dereferenced by the application.

7.3.4. sampl_t

typedef unsigned short sampl_t;

The data type sampl_t is one of the generic types used to represent data values in Comedilib. It is used in
a few places where a data type shorter than lsampl_t is useful. On most architectures, sampl_t is defined
to be uint16.

Most drivers represent data transferred by read() and write() using sampl_t. Applications should
check the subdevice flag SDF_LSAMPL to determine if the subdevice uses sampl_t or lsampl_t.

7.3.5. lsampl_t

typedef unsigned int lsampl_t;

The data type lsampl_t is the data type typically used to represent data values in libcomedi. On most
architectures, lsampl_t is defined to be uint32.

7.3.6. comedi_trig (deprecated)

typedef struct comedi_trig_struct comedi_trig;

struct comedi_trig_struct{
unsigned int subdev; /* subdevice */
unsigned int mode; /* mode */
unsigned int flags;
unsigned int n_chan; /* number of channels */
unsigned int *chanlist; /* channel/range list */
sampl_t *data; /* data list, size depends on subd flags */
unsigned int n; /* number of scans */
unsigned int trigsrc;
unsigned int trigvar;
unsigned int trigvar1;
unsigned int data_len;
unsigned int unused[3];

};

129

Comedi

The comedi_trig structure is a control structure used by the COMEDI_TRIG ioctl, an older method of
communicating instructions to the driver and hardware. Use of comedi_trig is deprecated, and should not
be used in new applications.

7.3.7. comedi_sv_t

typedef struct comedi_sv_struct comedi_sv_t;

struct comedi_sv_struct{
comedi_t *dev;
unsigned int subdevice;
unsigned int chan;

/* range policy */
int range;
int aref;

/* number of measurements to average (for ai) */
int n;

lsampl_t maxdata;
};

The comedi_sv_t structure is used by the comedi_sv_*() functions to provide a simple method of
accurately measuring slowly varying inputs. See the relevant section for more details.

7.3.8. comedi_cmd

typedef struct comedi_cmd_struct comedi_cmd;

struct comedi_cmd_struct{
unsigned int subdev;
unsigned int flags;

unsigned int start_src;
unsigned int start_arg;

unsigned int scan_begin_src;
unsigned int scan_begin_arg;

unsigned int convert_src;
unsigned int convert_arg;

unsigned int scan_end_src;
unsigned int scan_end_arg;

unsigned int stop_src;
unsigned int stop_arg;

unsigned int *chanlist;

130

Comedi

unsigned int chanlist_len;

sampl_t *data;
unsigned int data_len;

};

More information on using commands can be found in the command section.

7.3.9. comedi_insn

typedef struct comedi_insn_struct comedi_insn;

struct comedi_insn_struct{
unsigned int insn;
unsigned int n;
lsampl_t*data;
unsigned int subdev;
unsigned int chanspec;
unsigned int unused[3];

};

Comedi instructions are described by the comedi_insn structure. Applications send instructions to the
driver in order to perform control and measurement operations that are done immediately or
synchronously, i.e., the operations complete before program control returns to the application. In
particular, instructions cannot describe acquisition that involves timers or external events.

The field insn determines the type of instruction that is sent to the driver. Valid instruction types are:

INSN_READ

read values from an input channel

INSN_WRITE

write values to an output channel

INSN_BITS

read/write values on multiple digital I/O channels

INSN_CONFIG

configure a subdevice

INSN_GTOD

read a timestamp, identical to gettimeofday()

131

Comedi

INSN_WAIT

wait a specified number of nanoseconds

The number of samples to read or write, or the size of the configuration structure is specified by the field
n, and the buffer for those samples by data. The field subdev is the subdevice index that the instruction is
sent to. The field chanspec specifies the channel, range, and analog reference (if applicable).

Instructions can be sent to drivers using comedi_do_insn(). Multiple instructions can be sent to drivers in
the same system call using comedi_do_insnlist().

7.3.10. comedi_range

typedef struct comedi_range_struct comedi_range;

struct comedi_range_struct{
double min;
double max;
unsigned int unit;

}comedi_range;

The comedi_range structure conveys part of the information necessary to translate sample values to
physical units, in particular, the endpoints of the range and the physical unit type. The physical unit type
is specified by the field unit, which may take the values UNIT_volt for volts, UNIT_mA for milliamps,
or UNIT_none for unitless. The endpoints are specified by the fields min and max.

7.3.11. comedi_krange

typedef struct comedi_krange_struct comedi_krange;

struct comedi_krange_struct{
int min;
int max;
unsigned int flags;

};

The comedi_krange structure is used to transfer range information between the driver and Comedilib,
and should not normally be used by applications. The structure conveys the same information as the
comedi_range structure, except the fields min and max are integers, multiplied by a factor of 1000000
compared to the counterparts in comedi_range.

In addition, kcomedilib uses the comedi_krange structure in place of the comedi_range structure.

132

Comedi

7.3.12. comedi_insnlist

typedef struct comedi_insnlist_struct comedi_insnlist;

struct comedi_insnlist_struct{
unsigned int n_insns;
comedi_insn *insns;

};

An instruction list (insnlist) structure is used to communicate a list of instructions.

7.4. Comedi Function Reference

comedi_close

Name
comedi_close — close a Comedi device

Synopsis

#include <comedilib.h>

int comedi_close(comedi * device);

Description

Close a device previously opened by comedi_open().

Return value

If sucessful, comedi_close returns 0. On failure, -1 is returned.

133

Comedi

comedi_open

Name
comedi_open — open a Comedi device

Synopsis

#include <comedilib.h>

comedi_t * comedi_open(const char * filename);

Description

Open a Comedi device specified by the file filename.

Return value

If sucessful, comedi_open returns a pointer to a valid comedi_t structure. This structure is transparent;
the pointer should not be dereferenced by the application. NULL is returned on failure.

comedi_loglevel

Name
comedi_loglevel — change Comedilib logging properties

Synopsis

#include <comedilib.h>

int comedi_loglevel(int loglevel);

134

Comedi

Description

This function affects the output of debugging and error messages from Comedilib. By increasing the
loglevel, additional debugging information will be printed. Error and debugging messages are printed to
the stream stderr.

The default loglevel can be set by using the environment variable COMEDI_LOGLEVEL. The default
loglevel is 1.

In order to conserve resources, some debugging information is disabled by default when Comedilib is
compiled.

The meaning of the loglevels is as follows:

COMEDI_LOGLEVEL=0 Comedilib prints nothing.

COMEDI_LOGLEVEL=1 (default) Comedilib prints error messages when there is a self-consistency
error (i.e., an internal bug.)

COMEDI_LOGLEVEL=2 Comedilib prints an error message when an invalid parameter is passed.

COMEDI_LOGLEVEL=3 Comedilib prints an error message whenever an error is generated in the
Comedilib library or in the C library, when called by Comedilib.

COMEDI_LOGLEVEL=4 Comedilib prints a lot of junk.

Return value

This function returns the previous loglevel.

comedi_perror

Name
comedi_perror — print a Comedilib error message

135

Comedi

Synopsis

#include <comedilib.h>

void comedi_perror(const char * s);

Description

When a Comedilib function fails, it usually returns -1 or NULL, depending on the return type. An
internal library variable stores an error number, which can be retrieved with comedi_errno(). This error
number can be converted to a human-readable form by the functions comedi_perror() and
comedi_strerror().

These functions are intended to mimic the behavior of the standard C library functions perror(),
strerror(), and errno. In particular, Comedilib functions sometimes return an error that is generated inside
the C library; the comedi error message in this case is the same as the C library.

The function comedi_perror() prints an error message to stderr. The error message consists of the
argument string, a colon, a space, a description of the error condition, and a new line.

comedi_strerror

Name
comedi_strerror — return string describing Comedilib error code

Synopsis

#include <comedilib.h>

char * comedi_strerror(int errnum);

136

Comedi

Description

When a Comedilib function fails, it usually returns -1 or NULL, depending on the return type. An
internal library variable stores an error number, which can be retrieved with comedi_errno(). This error
number can be converted to a human-readable form by the functions comedi_perror() and
comedi_strerror().

These functions are intended to mimic the behavior of the standard C library functions perror(),
strerror(), and errno. In particular, Comedilib functions sometimes return an error that is generated inside
the C library; the comedi error message in this case is the same as the C library.

The function comedi_strerror() returns a pointer to a character string describing the Comedilib error
errnum. The persistence of the returned pointer is undefined, and should not be trusted after the next
Comedilib call. An unrecognized error number will return a pointer to the string "undefined error", or
similar.

comedi_errno

Name
comedi_errno — number of last Comedilib error

Synopsis

#include <comedilib.h>

int comedi_errno(void);

Description

When a Comedilib function fails, it usually returns -1 or NULL, depending on the return type. An
internal library variable stores an error number, which can be retrieved with comedi_errno(). This error
number can be converted to a human-readable form by the functions comedi_perror() and
comedi_strerror().

137

Comedi

These functions are intended to mimic the behavior of the standard C library functions perror(),
strerror(), and errno. In particular, Comedilib functions sometimes return an error that is generated inside
the C library; the comedi error message in this case is the same as the C library.

The function comedi_errno() returns an integer describing the most recent comedilib error. This integer
may be used as the errnum parameter for comedi_strerror().

Note that comedi_errno() is deliberately different than the variable errno. This is to overcome difficulties
in making errno thread-safe.

comedi_fileno

Name
comedi_fileno — integer descriptor of Comedilib device

Synopsis

#include <comedilib.h>

int comedi_fileno(comedi_t * device);

Description

The function comedi_fileno returns the integer descriptor for the device dev. This descriptor can then be
used as the file descriptor parameter of read(), write(), etc. This function is intended to mimic the
standard C library function fileno(). If dev is an invalid comedi_t pointer, the function returns -1 and sets
the appropriate Comedilib error value.

138

Comedi

comedi_get_n_subdevices

Name
comedi_get_n_subdevices — number of subdevices

Synopsis

#include <comedilib.h>

int comedi_get_n_subdevices(comedi_t * device);

Description

Returns the number of subdevices belonging to the Comedi device referenced by the parameter device.

comedi_get_version_code

Name
comedi_get_version_code — Comedi version code

Synopsis

#include <comedilib.h>

int comedi_get_version_code(comedi_t * device);

Description

Returns the Comedi kernel module version code. A valid Comedi device referenced by the parameter
device is necessary to communicate with the kernel module. On error, -1 is returned.

139

Comedi

The version code is encoded as a bitfield of three 8-bit numbers. For example, 0x00073d is the version
code for version 0.7.61.

This function is of limited usefulness. A typical mis-application of this function is to use it to determine
if a certain feature is supported. If the application needs to know of the existence of a particular feature,
an existence test function should be written and put in the Comedilib source.

comedi_get_driver_name

Name
comedi_get_driver_name — Comedi driver name

Synopsis

#include <comedilib.h>

char * comedi_get_driver_name(comedi_t * device);

Description

The function comedi_get_driver_name returns a pointer to a string containing the name of the driver
being used by comedi for the comedi device represented by device. This pointer is valid until the device
is closed. This function returns NULL if there is an error.

comedi_get_board_name

Name
comedi_get_board_name — Comedi device name

140

Comedi

Synopsis

#include <comedilib.h>

char * comedi_get_board_name(comedi_t * device);

Description

The function comedi_get_board_name returns a pointer to a string containing the name of the device.
This pointer is valid until the comedi descriptor it is closed. This function returns NULL if there is an
error.

comedi_get_subdevice_type

Name
comedi_get_subdevice_type — type of subdevice

Synopsis

#include <comedilib.h>

int comedi_get_subdevice_type(comedi_t * device, unsigned int subdevice);

Description

The function comedi_get_subdevice_type() returns an integer describing the type of subdevice that
belongs to the comedi device device and has the index subdevice. The function returns -1 if there is an
error.

XXX Subdevice type table

141

Comedi

comedi_find_subdevice_by_type

Name
comedi_find_subdevice_by_type — search for subdevice type

Synopsis

#include <comedilib.h>

int comedi_find_subdevice_by_type(comedi_t * device, int type, unsigned int
start_subdevice);

Description

The function comedi_find_subdevice_by_type() tries to locate a subdevice belonging to comedi device
device, having type type, starting with the subdevice start_subdevice. If it finds a subdevice with the
requested type, it returns its index. If it does not locate the requested subdevice, it returns -1 and sets the
Comedilib error number to XXX "subdevice not found". If there is an error, the function returns -1 and
sets the appropriate error.

comedi_get_read_subdevice

Name
comedi_get_read_subdevice — find streaming input subdevice

Synopsis

#include <comedilib.h>

int comedi_get_read_subdevice(comedi_t * device);

142

Comedi

Description

The function comedi_get_read_subdevice() returns the subdevice that allows streaming input for device
dev. If no subdevice supports streaming input, -1 is returned and the Comedilib error number is set to
XXX "subdevice not found".

comedi_get_write_subdevice

Name
comedi_get_write_subdevice — find streaming output subdevice

Synopsis

#include <comedilib.h>

int comedi_get_write_subdevice(comedi_t * device);

Description

The function comedi_get_write_subdevice() returns the subdevice that allows streaming output for
device dev. If no subdevice supports streaming output, -1 is returned and the Comedilib error number is
set to XXX "subdevice not found".

comedi_get_subdevice_flags

Name
comedi_get_subdevice_flags — properties of subdevice

143

Comedi

Synopsis

#include <comedilib.h>

int comedi_get_subdevice_flags(comedi_t * device, unsigned int subdevice);

Description

This function returns a bitfield describing the capabilities of the specified subdevice. If there is an error,
-1 is returned, and the Comedilib error value is set.

Table 1. subdevice flags

Subdevice Flag Value (hexadecimal) Description
SDF_BUSY 0x00000001 The subdevice is busy

performing an asynchronous
command. A subdevice being
"busy" is slightly different from
the "running" state flagged by
SDF_RUNNING. A "running"
subdevice is always "busy", but a
"busy" subdevice is not
necessarily "running". For
example, suppose an analog
input command has been
completed by the hardware, but
there are still samples in
Comedi’s buffer waiting to be
read out. In this case, the
subdevice is not "running", but is
still "busy" until all the samples
are read out or comedi_cancel()
is called.

SDF_BUSY_OWNER 0x00000002 The subdevice is "busy", and the
command it is running was
started by the current process.

SDF_LOCKED 0x00000004 The subdevice has been locked
by comedi_lock().

SDF_LOCK_OWNER 0x00000008 The subdevice is locked, and was
locked by the current process.

SDF_MAXDATA 0x00000010 The maximum data value for the
subdevice depends on the
channel.

144

Comedi

Subdevice Flag Value (hexadecimal) Description
SDF_FLAGS 0x00000020 The subdevice flags depend on

the channel (unfinished/broken
support in library).

SDF_RANGETYPE 0x00000040 The range type depends on the
channel.

SDF_CMD 0x00001000 The subdevice supports
asynchronous commands.

SDF_SOFT_CALIBRATED 0x00002000 The subdevice relies on the host
to do calibration in software.
Software calibration coefficients
are determined by the
comedi_soft_calibrate utility. See
the description of the
comedi_get_softcal_converter()
function for more information.

SDF_READABLE 0x00010000 The subdevice can be read (e.g.
analog input).

SDF_WRITABLE 0x00020000 The subdevice can be written to
(e.g. analog output).

SDF_INTERNAL 0x00040000 The subdevice does not have
externally visible lines.

SDF_GROUND 0x00100000 The subdevice supports
AREF_GROUND.

SDF_COMMON 0x00200000 The subdevice supports
AREF_COMMON.

SDF_DIFF 0x00400000 The subdevice supports
AREF_DIFF.

SDF_OTHER 0x00800000 The subdevice supports
AREF_OTHER

SDF_DITHER 0x01000000 The subdevice supports dithering
(via the CR_ALT_FILTER
chanspec flag).

SDF_DEGLITCH 0x02000000 The subdevice supports
deglitching (via the
CR_ALT_FILTER chanspec
flag).

SDF_RUNNING 0x08000000 An asynchronous command is
running. You can use this flag to
poll for the completion of an
output command.

145

Comedi

Subdevice Flag Value (hexadecimal) Description
SDF_LSAMPL 0x10000000 The subdevice uses the 32 bit

lsampl_t type instead of the 16
bit sampl_t for asynchronous
command data.

SDF_PACKED 0x20000000 The subdevice uses bitfield
samples for asynchronous
command data, one bit per
channel (otherwise it uses one
sampl_t or lsampl_t per channel).
Commonly used for digital
subdevices.

comedi_get_n_channels

Name
comedi_get_n_channels — number of subdevice channels

Synopsis

#include <comedilib.h>

int comedi_get_n_channels(comedi_t * device, unsigned int subdevice);

Description

The function comedi_get_n_channels() returns the number of channels of the subdevice belonging to the
comedi device device and having index subdevice. This function returns -1 on error and the Comedilib
error value is set.

146

Comedi

comedi_range_is_chan_specific

Name
comedi_range_is_chan_specific — range information depends on channel

Synopsis

#include <comedilib.h>

int comedi_range_is_chan_specific(comedi_t * device, unsigned int subdevice);

Description

If each channel of the specified subdevice has different range information, this function returns 1.
Otherwise, this function returns 0. On error, this function returns -1.

comedi_maxdata_is_chan_specific

Name
comedi_maxdata_is_chan_specific — maximum sample depends on channel

Synopsis

#include <comedilib.h>

int comedi_maxdata_is_chan_specific(comedi_t * device, unsigned int
subdevice);

Description

If each channel of the specified subdevice has different maximum sample values, this function returns 1.
Otherwise, this function returns 0. On error, this function returns -1.

147

Comedi

comedi_get_maxdata

Name
comedi_get_maxdata — maximum sample of channel

Synopsis

#include <comedilib.h>

lsampl_t comedi_get_maxdata(comedi_t * device, unsigned int subdevice,
unsigned int channel);

Description

The function comedi_get_maxdata() returns the maximum valid data value for channel channel of
subdevice subdevice belonging to the comedi device device.

Return value

The maximum valid sample value, or 0 on error.

comedi_get_n_ranges

Name
comedi_get_n_ranges — number of ranges of channel

Synopsis

#include <comedilib.h>

148

Comedi

int comedi_get_n_ranges(comedi_t * device, unsigned int subdevice, unsigned
int channel);

Description

The function comedi_get_n_ranges() returns the number of ranges of the channel chan belonging to the
subdevice of the comedi device device. This function returns -1 on error.

comedi_get_range

Name
comedi_get_range — range information of channel

Synopsis

#include <comedilib.h>

comedi_range * comedi_get_range(comedi_t * device, unsigned int subdevice,
unsigned int channel, unsigned int range);

Description

The function comedi_get_range() returns a pointer to a comedi_range structure that contains information
that can be used to convert sample values to or from physical units. The pointer is valid until the Comedi
device device is closed. If there is an error, NULL is returned.

149

Comedi

comedi_find_range

Name
comedi_find_range — search for range

Synopsis

#include <comedilib.h>

int comedi_find_range(comedi_t * device, unsigned int subdevice, unsigned int
channel, unsigned int unit, double min, double max);

Description

The function comedi_find_range() tries to locate the optimal (smallest) range for the channel chan
belonging to a subdevice of the comedi device device, that includes both min and max in units. If a
matching range is found, the index of the matching range is returned. If no matching range is available,
the function returns -1.

comedi_get_buffer_size

Name
comedi_get_buffer_size — streaming buffer size of subdevice

Synopsis

#include <comedilib.h>

int comedi_get_buffer_size(comedi_t * device, unsigned int subdevice);

150

Comedi

Description

The function comedi_get_buffer_size() returns the size (in bytes) of the streaming buffer for the
subdevice specified by device and subdevice. On error, -1 is returned.

comedi_get_max_buffer_size

Name
comedi_get_max_buffer_size — maximum streaming buffer size

Synopsis

#include <comedilib.h>

int comedi_get_max_buffer_size(comedi_t * device, unsigned int subdevice);

Description

The function comedi_get_max_buffer_size() returns the maximum allowable size (in bytes) of the
streaming buffer for the subdevice specified by device and subdevice. Changing the maximum buffer size
requires appropriate privileges. On error, -1 is returned.

comedi_set_buffer_size

Name
comedi_set_buffer_size — streaming buffer size of subdevice

Synopsis

#include <comedilib.h>

151

Comedi

int comedi_set_buffer_size(comedi_t * device, unsigned int subdevice,
unsigned int size);

Description

The function comedi_set_buffer_size() changes the size of the streaming buffer for the subdevice
specified by device and subdevice. The parameter size must be a multiple of the virtual memory page
size.

The virtual memory page size can be determined using sysconf(_SC_PAGE_SIZE).

comedi_trigger

Name
comedi_trigger — perform streaming input/output (deprecated)

Synopsis

#include <comedilib.h>

int comedi_trigger(comedi_t * device, comedi_trig * trig);

Status

deprecated

Description

The function comedi_trigger() instructs Comedi to perform the command specified by the trigger
structure trig. The return value depends on the particular trig being issued. If there is an error, -1 is
returned.

152

Comedi

comedi_do_insnlist

Name
comedi_do_insnlist — perform multiple instructions

Synopsis

#include <comedilib.h>

int comedi_do_insnlist(comedi_t * device, comedi_insnlist * list);

Description

The function comedi_do_insnlist() performs multiple Comedi instructions as part of one system call. In
addition, Comedi attempts to perform the instructions atomically, that is, on standard Linux kernels, no
process preemption should occur during the instructions. However, the process may be preempted before
or after the group of instructions.

This function can be used to avoid the overhead of multiple system calls, or to ensure that multiple
instructions occur without significant delay between them.

Preemption may occur if any of the instructions or the data arrays of any of the instructions exist in
non-resident or copy-on-write pages.

Return value

The function comedi_do_insnlist() returns the number of sucessfully completed instructions. Error
information for the unsucessful instruction is not available. If there is an error before the first instruction
can be executed, -1 is returned.

153

Comedi

comedi_do_insn

Name
comedi_do_insn — perform instruction

Synopsis

#include <comedilib.h>

int comedi_do_insn(comedi_t * device, comedi_insn * instruction);

Description

The function comedi_do_insn() performs a single instruction. If sucessful, comedi_do_insn() returns the
number of samples measured, which may be less than the number of requested samples. Comedi limits
the number of requested samples in order to enforce fairness among processes. If there is an error, -1 is
returned.

comedi_lock

Name
comedi_lock — subdevice reservation

Synopsis

#include <comedilib.h>

int comedi_lock(comedi_t * device, unsigned int subdevice);

Description

The function comedi_lock() reserves a subdevice for use by the current process. While the lock is held,
no other process is allowed to read, write, or configure that subdevice, although other processes can read

154

Comedi

information about the subdevice. The lock is released when comedi_unlock() is called, or the device is
closed.

Return value

If sucessful, 0 is returned. If there is an error, -1 is returned.

comedi_unlock

Name
comedi_unlock — subdevice reservation

Synopsis

#include <comedilib.h>

int comedi_unlock(comedi_t * device, unsigned int subdevice);

Description

The function comedi_unlock() released a subdevice lock acquired by comedi_lock(). If sucessful, 0 is
returned, otherwise -1.

comedi_to_phys

Name
comedi_to_phys — convert sample to physical units

155

Comedi

Synopsis

#include <comedilib.h>

double comedi_to_phys(lsampl_t data, comedi_range * range, lsampl_t maxdata);

Description

Converts data given in sample values (lsampl_t, between 0 and maxdata) into physical units (double).
The parameter range represents the conversion information to use, and the parameter maxdata represents
the maximum possible data value for the channel that the data was read.

Conversion of endpoint sample values, that is, sample values equal to 0 or maxdata, is affected by the
Comedilib out-of-range behavior. If the out-of-range behavior is set to COMEDI_OOR_NAN, endpoint
values are converted to NAN. If the out-of-range behavior is set to COMEDI_OOR_NUMBER, the
endpoint values are converted similarly to other values.

If there is an error, NAN is returned.

comedi_to_physical

Name
comedi_to_physical — convert sample to physical units

Synopsis

#include <comedilib.h>

double comedi_to_physical(lsampl_t data, const comedi_polynomial_t

*conversion_polynomial);

156

Comedi

Description

Converts data given in Comedi’s integer sample values (lsampl_t, between 0 and maxdata) into physical
units (double). The conversion_polynomial parameter is obtained from either
comedi_get_hardcal_converter() or comedi_get_softcal_converter(). No range checking of the input
data is performed. It is up to you to check for data values of 0 or maxdata if you want to detect
possibly out-of-range readings.

This function is intended to supplant comedi_to_phys(), and was introduced in order to support software
calibrations.

Return value

Physical value corresponding to the input sample value.

comedi_from_phys

Name
comedi_from_phys — convert physical units to sample

Synopsis

#include <comedilib.h>

lsampl_t comedi_from_phys(double data, comedi_range * range, lsampl_t
maxdata);

Description

Converts data given in physical units (data) into sample values (lsampl_t, between 0 and maxdata). The
parameter rng represents the conversion information to use, and the parameter maxdata represents the
maximum possible data value for the channel that the data will be written to.

Conversion is not affected by out-of-range behavior. Out-of-range data parameters are silently truncated
to the range 0 to maxdata.

157

Comedi

comedi_from_physical

Name
comedi_from_physical — convert physical units to sample

Synopsis

#include <comedilib.h>

lsampl_t comedi_from_physical(double data, const comedi_polynomial_t

*conversion_polynomial);

Description

Converts data given in physical units into Comedi’s integer sample values (lsampl_t, between 0 and
maxdata). The conversion_polynomial parameter is obtained from either
comedi_get_hardcal_converter() or comedi_get_softcal_converter(). The result will be rounded using the
C library’s current rounding direction. No range checking of the input data is performed. It is up to you
to insure your data is within the limits of the output range you are using.

This function is intended to supplant comedi_from_phys(), and was introduced in order to support
software calibrations.

Return value

Comedi sample value corresponding to input physical value.

comedi_data_read

Name
comedi_data_read — read single sample from channel

158

Comedi

Synopsis

#include <comedilib.h>

int comedi_data_read(comedi_t * device, unsigned int subdevice, unsigned int
channel, unsigned int range, unsigned int aref, lsampl_t * data);

Description

Reads a single sample on the channel specified by the Comedi device device, the subdevice subdevice,
and the channel channel. For the A/D conversion (if appropriate), the device is configured to use range
specification range and (if appropriate) analog reference type aref. Analog reference types that are not
supported by the device are silently ignored.

The function comedi_data_read() reads one data value from the specified channel and places the data
value in the location pointed to by data.

WARNING: comedi_data_read() does not do any pausing to allow multiplexed analog inputs to settle
before performing an analog to digital conversion. If you are switching between different channels and
need to allow your analog input to settle for an accurate reading, use comedi_data_read_delayed(), or set
the input channel at an earlier time with comedi_data_read_hint().

On sucess, comedi_data_read() returns 1 (the number of samples read). If there is an error, -1 is returned.

Data values returned by this function are unsigned integers less than or equal to the maximum sample
value of the channel, which can be determined using the function comedi_get_maxdata(). Conversion of
data values to physical units can be performed by the function comedi_to_phys().

comedi_data_read_delayed

Name
comedi_data_read_delayed — read single sample from channel after delaying for specified
settling time

159

Comedi

Synopsis

#include <comedilib.h>

int comedi_data_read_delayed(comedi_t * device, unsigned int subdevice,
unsigned int channel, unsigned int range, unsigned int aref, lsampl_t * data,
unsigned int nanosec);

Description

Similar to comedi_data_read() except it will wait for the specified number of nanoseconds between
setting the input channel and taking a sample. For analog inputs, most boards have a single analog to
digital converter which is multiplexed to be able to read multiple channels. If the input is not allowed to
settle after the multiplexer switches channels, the reading will be inaccurate. This function is useful for
allowing a multiplexed analog input to settle when switching channels.

Although the settling time is specified in nanoseconds, the actual settling time will be rounded up to the
nearest microsecond.

comedi_data_read_hint

Name
comedi_data_read_hint — tell driver which channel/range/aref you are going to read from next

Synopsis

#include <comedilib.h>

int comedi_data_read_hint(comedi_t * device, unsigned int subdevice, unsigned
int channel, unsigned int range, unsigned int aref);

Description

Used to prepare an analog input for a subsequent call to comedi_data_read(). It is not necessary to use
this function, but it can be useful for eliminating inaccuaracies caused by insufficient settling times when

160

Comedi

switching the channel or gain on an analog input. This function sets an analog input to the channel,
range, and aref specified but does not perform an actual analog to digital conversion.

Alternatively, one can simply use comedi_data_read_delayed(), which sets up the input, pauses to allow
settling, then performs a conversion.

comedi_data_write

Name
comedi_data_write — write single sample to channel

Synopsis

#include <comedilib.h>

int comedi_data_write(comedi_t * device, unsigned int subdevice, unsigned int
channel, unsigned int range, unsigned int aref, lsampl_t data);

Description

Writes a single sample on the channel that is specified by the Comedi device device, the subdevice
subdevice, and the channel channel. If appropriate, the device is configured to use range specification
range and analog reference type aref. Analog reference types that are not supported by the device are
silently ignored.

The function comedi_data_write() writes the data value specified by the parameter data to the specified
channel.

On sucess, comedi_data_write() returns 1 (the number of samples written). If there is an error, -1 is
returned.

161

Comedi

comedi_dio_config

Name
comedi_dio_config — change input/output properties of channel

Synopsis

#include <comedilib.h>

int comedi_dio_config(comedi_t * device, unsigned int subdevice, unsigned int
channel, unsigned int direction);

Description

The function comedi_dio_config() configures individual channels in a digital I/O subdevice to be either
input or output, depending on the value of parameter direction. Valid directions are COMEDI_INPUT or
COMEDI_OUTPUT.

Depending on the capabilities of the hardware device, multiple channels may be grouped together to
determine direction. In this case, a single call to comedi_dio_config() for any channel in the group will
affect the entire group.

If sucessful, 1 is returned, otherwise -1.

comedi_dio_get_config

Name
comedi_dio_get_config — query input/output properties of channel

Synopsis

#include <comedilib.h>

int comedi_dio_get_config(comedi_t * device, unsigned int subdevice, unsigned
int channel, unsigned int * direction);

162

Comedi

Description

The function comedi_dio_get_config() querys the configuration of an individual channel in a digital I/O
subdevice (see comedi_dio_config()). On success, the variable specified by the "direction" pointer will
be set to either COMEDI_INPUT or COMEDI_OUTPUT.

If sucessful, 0 is returned, otherwise -1.

comedi_dio_read

Name
comedi_dio_read — read single bit from digital channel

Synopsis

#include <comedilib.h>

int comedi_dio_read(comedi_t * device, unsigned int subdevice, unsigned int
channel, unsigned int * bit);

Description

The function reads the channel channel belonging to the subdevice subdevice of device device. The data
value that is read is stored in the location pointed to by bit. This function is equivalent to
comedi_data_read(device,subdevice,channel,0,0,bit). This function does not require a digital subdevice
or a subdevice with a maximum data value of 1 to work properly.

Return values and errors are the same as comedi_data_read().

163

Comedi

comedi_dio_write

Name
comedi_dio_write — write single bit to digital channel

Synopsis

#include <comedilib.h>

int comedi_dio_write(comedi_t * device, unsigned int subdevice, unsigned int
channel, unsigned int bit);

Description

The function writes the value bit to the channel channel belonging to the subdevice subdevice of device
device. This function is equivalent to comedi_data_write(device,subdevice,channel,0,0,bit). This
function does not require a digital subdevice or a subdevice with a maximum data value of 1 to work
properly.

Return values and errors are the same as comedi_data_write().

comedi_dio_bitfield

Name
comedi_dio_bitfield — read/write multiple digital channels

Synopsis

#include <comedilib.h>

int comedi_dio_bitfield(comedi_t * device, unsigned int subdevice, unsigned
int write_mask, unsigned int * bits);

164

Comedi

Status

deprecated

Description

This function is deprecated. Use comedi_dio_bitfield2() instead.

comedi_dio_bitfield2

Name
comedi_dio_bitfield2 — read/write multiple digital channels

Synopsis

#include <comedilib.h>

int comedi_dio_bitfield2(comedi_t * device, unsigned int subdevice, unsigned
int write_mask, unsigned int * bits, unsigned int base_channel);

Description

The function comedi_dio_bitfield2() allows multiple channels to be read or written together on a digital
input, output, or configurable digital I/O device. The parameter write_mask and the value pointed to by
bits are interpreted as bit fields, with the least significant bit representing channel base_channel. For
each bit in write_mask that is set to 1, the cooresponding bit in *bits is written to the digital output
channel. After writing all the output channels, each channel is read, and the result placed in the
approprate bits in *bits. The result of reading an output channel is the last value written to the output
channel.

All the channels may not be read or written at the exact same time. For example, the driver may need to
sequentially write to several ports in order to set all the digital channels specified by the write_mask.

165

Comedi

comedi_sv_init

Name
comedi_sv_init — slowly-varying inputs

Synopsis

#include <comedilib.h>

int comedi_sv_init(comedi_sv_t * sv, comedi_t * device, unsigned int
subdevice, unsigned int channel);

Status

deprecated

Description

The function comedi_sv_init() initializes the slow varying Comedi structure sv to use the device device,
the analog input subdevice subdevice, and the channel channel. The slow varying Comedi structure is
used by comedi_sv_measure() to accurately measure an analog input by averaging over many samples.
The default number of samples is 100. This function returns 0 on success, -1 on error.

comedi_sv_update

Name
comedi_sv_update — slowly-varying inputs

Synopsis

#include <comedilib.h>

int comedi_sv_update(comedi_sv_t * sv);

166

Comedi

Status

deprecated

Description

The function comedi_sv_update() updates internal parameters of the slowly varying Comedi structure sv.

comedi_sv_measure

Name
comedi_sv_measure — slowly-varying inputs

Synopsis

#include <comedilib.h>

int comedi_sv_measure(comedi_sv_t * sv, double * data);

Status

deprecated

Description

The function comedi_sv_measure() uses the slowly varying Comedi structure sv to measure a slowly
varying signal. If sucessful, the result (in physical units) is stored in the location pointed to by data, and
the number of samples is returned. On error, -1 is returned.

167

Comedi

comedi_get_cmd_src_mask

Name
comedi_get_cmd_src_mask — streaming input/output capabilities

Synopsis

#include <comedilib.h>

int comedi_get_cmd_src_mask(comedi_t * device, unsigned int subdevice,
comedi_cmd * command);

Description

The command capabilities of the subdevice indicated by the parameters device and subdevice are probed,
and the results placed in the command structure pointed to by the parameter command. The trigger
source elements of the command structure are set to the logical OR value of possible trigger sources.
Other elements in the structure are undefined. If sucessful, 0 is returned, otherwise -1.

comedi_get_cmd_generic_timed

Name
comedi_get_cmd_generic_timed — streaming input/output capabilities

Synopsis

#include <comedilib.h>

int comedi_get_cmd_generic_timed(comedi_t * device, unsigned int subdevice,
comedi_cmd * command, unsigned int period_ns);

168

Comedi

Description

The command capabilities of the subdevice indicated by the parameters device and subdevice are probed,
and the results placed in the command structure pointed to by the parameter command. The command
structure pointed to by the parameter command is modified to be a valid command that can be used as a
parameter to comedi_command(). The command measures samples at a rate that corresponds to the
period period_ns. The rate is adjusted to a rate that the device can handle. If sucessful, 0 is returned,
otherwise -1.

comedi_cancel

Name
comedi_cancel — stop streaming input/output in progress

Synopsis

#include <comedilib.h>

int comedi_cancel(comedi_t * device, unsigned int subdevice);

Description

The function comedi_cancel() can be used to stop a Comedi command previously started by
comedi_command() that is still in progress on the subdevice indicated by the parameters device and
subdevice. This may not return the subdevice to a ready state, since there may be samples in the buffer
that need to be read.

If sucessful, 0 is returned, otherwise -1.

169

Comedi

comedi_command

Name
comedi_command — start streaming input/output

Synopsis

#include <comedilib.h>

int comedi_command(comedi_t * device, comedi_cmd * command);

Description

The function comedi_command() starts streaming input or output. The command structure pointed to by
the parameter command specifies the acquisition. The command must be able to pass
comedi_command_test() with a return value of 0, or comedi_command() will fail. For input subdevices,
sample values are read using the function read(). For output subdevices, sample values are written using
the function write().

If sucessful, 0 is returned, otherwise -1.

comedi_command_test

Name
comedi_command_test — test streaming input/output configuration

Synopsis

#include <comedilib.h>

int comedi_command_test(comedi_t * device, comedi_cmd * command);

170

Comedi

Description

The function comedi_command_test() tests the command structure pointed to by the parameter
command and returns an integer describing the testing stages that were sucessfully passed. In addition, if
elements of the command structure are invalid, they may be modified. Source elements are modified to
remove invalid source triggers. Argument elements are adjusted or rounded to the nearest valid value.

The meanings of the return value are as follows.

0 indicates a valid command.

1 indicates that one of the *_src members of the command contained an unsupported trigger. The bits
corresponding to the unsupported triggers are zeroed.

2 indicates that the particular combination of *_src settings is not supported by the driver, or that one of
the *_src members has the bit corresponding to multiple trigger sources set at the same time.

3 indicates that one of the *_arg members of the command is set outside the range of allowable values.
For instance, an argument for a TRIG_TIMER source which exceeds the board’s maximum speed. The
invalid *_arg members will be adjusted to valid values.

4 indicates that one of the *_arg members required adjustment. For instance, the argument of a
TRIG_TIMER source may have been rounded to the nearest timing period supported by the board.

5 indicates that some aspect of the command’s chanlist is unsupported by the board. For example, some
board’s require that all channels in the chanlist use the same range.

comedi_poll

Name
comedi_poll — force updating of streaming buffer

Synopsis

#include <comedilib.h>

int comedi_poll(comedi_t * device, unsigned int subdevice);

171

Comedi

Description

The function comedi_poll() is used on a subdevice that has a Comedi command in progress in order to
update the streaming buffer. If supported by the driver, all available samples are copied to the streaming
buffer. These samples may be pending in DMA buffers or device FIFOs. If sucessful, the number of
additional bytes available is returned. If there is an error, -1 is returned.

comedi_set_max_buffer_size

Name
comedi_set_max_buffer_size — streaming buffer size of subdevice

Synopsis

#include <comedilib.h>

int comedi_set_max_buffer_size(comedi_t * device, unsigned int subdevice,
unsigned int max_size);

Description

The function comedi_set_max_buffer_size() changes the maximum allowable size (in bytes) of the
streaming buffer for the subdevice specified by device and subdevice. Changing the maximum buffer size
requires appropriate privileges. If sucessful, the old buffer size is returned. On error, -1 is returned.

172

Comedi

comedi_get_buffer_contents

Name
comedi_get_buffer_contents — streaming buffer status

Synopsis

#include <comedilib.h>

int comedi_get_buffer_contents(comedi_t * device, unsigned int subdevice);

Description

The function comedi_get_buffer_contents() is used on a subdevice that has a Comedi command in
progress. The number of bytes that are available in the streaming buffer is returned. If there is an error, -1
is returned.

comedi_mark_buffer_read

Name
comedi_mark_buffer_read — streaming buffer control

Synopsis

#include <comedilib.h>

int comedi_mark_buffer_read(comedi_t * device, unsigned int subdevice,
unsigned int num_bytes);

Description

The function comedi_mark_buffer_read() is used on a subdevice that has a Comedi input command in
progress. It should only be used if you are using a mmap() (as opposed to calling read() on the device

173

Comedi

file) to read data from Comedi’s buffer, since Comedi will automatically keep track of how many bytes
have been transferred via read() calls. This function is used to indicate that the next num_bytes bytes in
the buffer are no longer needed and may be discarded. If there is an error, -1 is returned.

comedi_mark_buffer_written

Name
comedi_mark_buffer_written — streaming buffer control

Synopsis

#include <comedilib.h>

int comedi_mark_buffer_written(comedi_t * device, unsigned int subdevice,
unsigned int num_bytes);

Description

The function comedi_mark_buffer_written() is used on a subdevice that has a Comedi output command
in progress. It should only be used if you are using a mmap() (as opposed to calling write() on the device
file) to write data to Comedi’s buffer, since Comedi will automatically keep track of how many bytes
have been transferred via write() calls. This function is used to indicate that the next num_bytes bytes in
the buffer are valid and may be sent to the device. If there is an error, -1 is returned.

comedi_get_buffer_offset

Name
comedi_get_buffer_offset — streaming buffer status

174

Comedi

Synopsis

#include <comedilib.h>

int comedi_get_buffer_offset(comedi_t * device, unsigned int subdevice);

Description

The function comedi_get_buffer_offset() is used on a subdevice that has a Comedi command in progress.
This function returns the offset in bytes of the read pointer in the streaming buffer. This offset is only
useful for memory mapped buffers. If there is an error, -1 is returned.

comedi_get_timer

Name
comedi_get_timer — timer information (deprecated)

Synopsis

#include <comedilib.h>

int comedi_get_timer(comedi_t * device, unsigned int subdevice, double
frequency, unsigned int * trigvar, double * actual_frequency);

Status

deprecated

Description

The function comedi_get_timer converts the frequency frequency to a number suitable to send to the
driver in a comedi_trig structure. This function remains for compatibility with very old versions of
Comedi, that converted sampling rates to timer values in the libary. This conversion is now done in the

175

Comedi

kernel, and every device has the timer type nanosec_timer, indicating that timer values are simply a time
specified in nanoseconds.

comedi_timed_1chan

Name
comedi_timed_1chan — streaming input (deprecated)

Synopsis

#include <comedilib.h>

int comedi_timed_1chan(comedi_t * device, unsigned int subdevice, unsigned
int channel, unsigned int range, unsigned int aref, double frequency,
unsigned int num_samples, double * data);

Status

deprecated

Description

Not documented.

comedi_set_global_oor_behavior

Name
comedi_set_global_oor_behavior — out-of-range behavior

176

Comedi

Synopsis

#include <comedilib.h>

int comedi_set_global_oor_behavior(enum comedi_oor_behavior behavior);

Status

alpha

Description

This function changes the Comedilib out-of-range behavior. This currently affects the behavior of
comedi_to_phys() when converting endpoint sample values, that is, sample values equal to 0 or maxdata.
If the out-of-range behavior is set to COMEDI_OOR_NAN, endpoint values are converted to NAN. If
the out-of-range behavior is set to COMEDI_OOR_NUMBER, the endpoint values are converted
similarly to other values.

The previous out-of-range behavior is returned.

comedi_apply_calibration

Name
comedi_apply_calibration — set hardware calibration from file

Synopsis

#include <comedilib.h>

int comedi_apply_calibration(comedi_t *device, unsigned int subdevice,
unsigned int channel, unsigned int range, unsigned int aref, const char

*file_path);

177

Comedi

Status

alpha

Description

This function sets the calibration of the specified subdevice so that it is in proper calibration when using
the specified channel, range and aref. It does so by performing writes to the appropriate channels of the
board’s calibration subdevice(s). Depending on the hardware, the calibration settings used may or may
not depend on the channel, range, or aref. Furthermore, the calibrations appropriate for different channel,
range, and aref parameters may not be able to be applied simultaneously. For example, some boards
cannot have their analog inputs calibrated for more than one input range simultaneously. Applying a
calibration for range 1 may blow away a previously applied calibration for range 0. Or, applying a
calibration for analog input channel 0 may cause the same calibration to be applied to all the other analog
input channels as well. Your only guarantee is that calls to comedi_apply_calibration() on different
subdevices will not interfere with each other.

In practice, their are some rules of thumb on how calibrations behave. No calibrations depend on the
aref. A multiplexed analog input will have calibration settings that do not depend on the channel, and
applying a setting for one channel will affect all channels equally. Analog outputs, and analog inputs
with independent a/d converters for each input channel, will have calibrations settings which do depend
on the channel, and the settings for each channel will be independent of the other channels.

If you wish to investigate exactly what comedi_apply_calibration() is doing, you can perform reads on
your board’s calibration subdevice to see which calibration channels it is changing. You can also try to
decipher the calibration file directly (it’s a text file).

The file_path parameter can be used to specify the file which contains the calibration information. If
file_path is NULL, then comedilib will use a default file location. The calibration information used by
this function is generated by the comedi_calibrate program (see its man page).

The functions comedi_parse_calibration_file(), comedi_apply_parsed_calibration(), and
comedi_cleanup_calibration() provide the same functionality at a slightly lower level.

Return value

Zero on success, a negative number on failure.

178

Comedi

comedi_apply_parsed_calibration

Name
comedi_apply_parsed_calibration — set calibration from memory

Synopsis

#include <comedilib.h>

int comedi_apply_parsed_calibration(comedi_t * device, unsigned int
subdevice, unsigned int channel, unsigned int range, unsigned int aref, const
comedi_calibration_t *calibration);

Status

alpha

Description

This function is similar to comedi_apply_calibration() except the calibration information is read from
memory instead of a file. This function can be more efficient than comedi_apply_calibration() since the
calibration file does not need to be reparsed with every call. The calibration is obtained by a call to
comedi_parse_calibration_file().

Return value

Zero on success, a negative number on failure.

179

Comedi

comedi_cleanup_calibration_file

Name
comedi_cleanup_calibration_file — free calibration resources

Synopsis

#include <comedilib.h>

void comedi_cleanup_calibration_file(comedi_calibration_t *calibration);

Status

alpha

Description

This function frees the resources associated with a comedi_calibration_t obtained from
comedi_parse_calibration_file(). calibration can not be used again after calling this function.

comedi_get_default_calibration_path

Name
comedi_get_default_calibration_path — get default calibration file path

Synopsis

#include <comedilib.h>

char* comedi_get_default_calibration_path(comedi_t *dev);

180

Comedi

Status

alpha

Description

This function returns a string containing a default calibration file path appropriate for dev. Memory for
the string is allocated by the function, and should be freed when the string is no longer needed.

Return value

A string which contains a file path useable by comedi_parse_calibration_file(). On error, NULL is
returned.

comedi_parse_calibration_file

Name
comedi_parse_calibration_file — load contents of calibration file

Synopsis

#include <comedilib.h>

comedi_calibration_t* comedi_parse_calibration_file(const char *file_path);

Status

alpha

181

Comedi

Description

This function parses a calibration file (produced by the comedi_calibrate or comedi_soft_calibrate
programs) and returns a pointer to a comedi_calibration_t which can be passed to the
comedi_apply_parsed_calibration() or comedi_get_softcal_converter() functions. When you are finished
using the comedi_calibration_t, you should call comedi_cleanup_calibration() to free the resources
associated with the comedi_calibration_t.

The comedi_get_default_calibration_path() function may be useful in conjunction with this function.

Return value

A pointer to parsed calibration information on success, or NULL on failure.

comedi_get_hardcal_converter

Name
comedi_get_hardcal_converter — get converter for hardware-calibrated subdevice

Synopsis

#include <comedilib.h>

int comedi_get_hardcal_converter(comedi_t *dev, unsigned subdevice, unsigned
channel, unsigned range, enum comedi_conversion_direction direction,
comedi_polynomial_t *converter);

Status

alpha

182

Comedi

Description

comedi_get_hardcal_converter() initializes converter so it can be passed to either
comedi_to_physical() or comedi_from_physical(). The result can be used to convert data from the
specified subdevice, channel, and range. The direction parameter specifies whether converter
will be passed to comedi_to_physical() or comedi_from_physical().

This function initializes converter as a simple linear function with no calibration information,
appropriate for boards which do their gain/offset/nonlinearity corrections in hardware. If your board
needs calibration to be performed in software by the host computer, use comedi_get_softcal_converter()
instead. A subdevice will advertise the fact that it depends on a software calibration with the
SDF_SOFT_CALIBRATED subdevice flag.

The result of this function will only depend on the channel parameter if either
comedi_range_is_chan_specific() or comedi_maxdata_is_chan_specific() is true for the specified
subdevice.

Return value

Zero on success or -1 on failure.

comedi_get_softcal_converter

Name
comedi_get_softcal_converter — get converter for software-calibrated subdevice

Synopsis

#include <comedilib.h>

int comedi_get_softcal_converter(unsigned subdevice, unsigned channel,
unsigned range, enum comedi_conversion_direction direction, const
comedi_calibration_t *parsed_calibration, comedi_polynomial_t *converter);

183

Comedi

Status

alpha

Description

comedi_get_softcal_converter() initializes converter so it can be passed to either comedi_to_physical()
or comedi_from_physical(). The converter parameter can then be used to convert data from the
specified subdevice, channel, and range. The direction parameter specifies whether converter
will be passed to comedi_to_physical() or comedi_from_physical(). The parsed_calibration
parameter contains the software calibration values for your device, and may be obtained by calling
comedi_parse_calibration_file() on a calibration file generated by the comedi_soft_calibrate program.

This function is only useful for boards that perform their calibrations in software on the host computer. A
subdevice will advertise the fact that it depends on a software calibration with the
SDF_SOFT_CALIBRATED subdevice flag.

Whether or not the result of this function actually depends on the channel parameter is hardware
dependent. For example, a multiplexed analog input will typically use the same calibration for all input
channels. Analog outputs will typically use different calibrations for each output channel.

Software calibrations are implemented as polynomials (up to third order). Since the inverse of
polynomials of order higher than one can’t be represented exactly as another polynomial, you may not be
able to get converters for the "reverse" direction. For example, you may be able to get a converter for an
analog input in the COMEDI_TO_PHYSICAL direction, but not in the COMEDI_FROM_PHYSICAL
direction.

Return value

Zero on success or -1 on failure.

Glossary
Application Program Interface

The (documented) set of function calls supported by a particular application, by which

184

Comedi

programmers can access the functionality available in the application.

buffer

Comedi uses permanently allocated kernel memory for streaming input and output to store data that
has been measured by a device, but has not been read by an application. These buffers can be
resized by the Comedilib function comedi_buffer_XXX() or the comedi_config utility.

buffer overflow

This is an error message that indicates that the driver ran out of space in a Comedi buffer to put
samples. It means that the application is not copying data out of the buffer quickly enough. Often,
this problem can be fixed by making the Comedi buffer larger. See comedi_buffer_XXX for more
information.

Differential IO

...

Direct Memory Access

DMA is a method of transferring data between a device and the main memory of a computer. DMA
operates differently on ISA and PCI cards. ISA DMA is handled by a controller on the motherboard
and is limited to transfers to/from the lowest 16 MB of physical RAM and can only handle a single
segment of memory at a time. These limitations make it almost useless. PCI ("bus mastering")
DMA is handled by a controller on the device, and can typically address 4 GB of RAM and handle
many segments of memory simultaneously. DMA is usually not the only means to data transfer, and
may or may not be the optimal transfer mechanism for a particular situation.

First In, First Out

Most devices have a limited amount of on-board space to store samples before they are transferred
to the Comedi buffer. This allows the CPU or DMA controller to do other things, and then
efficiently process a large number of samples simultaneously. It also increases the maximum
interrupt latency that the system can handle without interruptions in data.

185

Comedi

Comedi command

Comedi commands are the mechanism that applications configure subdevices for streaming input
and output.

command

See: Comedi command

configuration option

instruction

Comedi instructions are the mechanism used by applications to do immediate input from channels,
output to channels, and configuration of subdevices and channels.

instruction list

Instruction lists allow the application to perform multiple Comedi instructions in the same system
call.

option

See Also: option list .

option list

Option lists are used with comedi_config to perform driver configuration.
See Also: configuration option , option .

overrun

This is an error message that indicates that there was device-level problem, typically with trigger
pulses occurring faster than the board can handle.

186

Comedi

poll

The term poll (and polling) is used for several different related concepts in Comedi. Comedi
implements the poll() system call for Comedi devices, which is similar to select(), and returns
information about file descriptors that can be read or written. Comedilib also has a function called
comedi_poll(), which causes the driver to copy all available data from the device to the Comedi
buffer. In addition, some drivers may use a polling technique in place of interrupts.

187

	1. Overview
	1.1. What is a device driver?
	1.2. Policy vs. mechanism
	1.3. A general DAQ device driver package
	1.4. DAQ signals
	1.5. Device hierarchy
	1.6. Acquisition terminology
	1.7. DAQ functions
	1.8. Supporting functionality

	2. Configuration
	2.1. Configuration
	2.2. Getting information about a card

	3. Writing Comedi programs
	3.1. Your first Comedi program
	3.2. Converting samples to voltages
	3.3. Using the file interface
	3.4. Your second Comedi program: simple acquisition
	3.5. Your third Comedi program: instructions
	3.6. Your fourth Comedi program: commands

	4. Acquisition and configuration functions
	4.1. Functions for single acquisition
	4.1.1. Single digital acquisition
	4.1.2. Single analog acquisition

	4.2. Instructions for multiple acquisitions
	4.2.1. The instruction data structure
	4.2.2. Instruction execution

	4.3. Instructions for configuration
	4.4. Instruction for internal triggering
	4.5. Commands for streaming acquisition
	4.5.1. Executing a command
	4.5.2. The command data structure
	4.5.3. The command trigger events
	4.5.4. The command flags
	4.5.5. Antialiasing

	4.6. Slowlyvarying inputs
	4.7. Experimental functionality
	4.7.1. Digital input combining machines
	4.7.2. Analog filtering configuration
	4.7.3. Analog Output Waveform Generation
	4.7.4. Extended Triggering
	4.7.5. Analog Triggering
	4.7.6. Bitfield Pattern Matching Extended Trigger
	4.7.7. Counter configuration
	4.7.8. One source plus auxiliary counter configuration
	4.7.9. National instruments RTSI trigger bus

	5. Writing a Comedi driver
	5.1. Communication user spacekernel space
	5.2. Generic functionality
	5.2.1. Data structures
	5.2.1.1. comedilrange
	5.2.1.2. comedisubdevice
	5.2.1.3. comedidevice
	5.2.1.4. comediasync
	5.2.1.5. comedidriver

	5.2.2. Generic driver support functions

	5.3. Boardspecific functionality
	5.4. Callbacks, events and interrupts
	5.5. Device driver caveats
	5.6. Integrating the driver in the Comedi library

	6. Lowlevel drivers
	6.1. Lowlevel drivers
	6.1.1. 8255.o generic 8255 support
	6.1.2. acl7225b.o Adlink NuDAQ ACL7225b compatibles
	6.1.3. adlpci6208.o ADLink PCI6208A
	6.1.4. adlpci7432.o Driver for the Adlink PCI7432 64 ch. isolated digital io board
	6.1.5. adlpci8164.o Driver for the Adlink PCI8164 4 Axes Motion Control board
	6.1.6. adlpci9111.o Adlink PCI9111HR
	6.1.7. adlpci9118.o Adlink PCI9118DG, PCI9118HG, PCI9118HR
	6.1.8. advpci1710.o Advantech PCI1710, PCI1710HG, PCI1711, PCI1713, Advantech PCI1720, PCI1731
	6.1.9. advpcidio.o Advantech PCI1730, PCI1733, PCI1734, PCI1750, PCI1751, PCI1752, PCI1753/E, PCI1754, PCI1756, PCI1762
	6.1.10. aioaio128.o Acces I/O Products PC104 AIO128 Analog I/O Board
	6.1.11. aioiiro16.o Acces I/O Products PC104 IIRO16 Relay And Isolated Input Board
	6.1.12. amplcdio200.o Amplicon PC272E, PCI272
	6.1.13. amplcpc236.o Amplicon PC36AT, PCI236
	6.1.14. amplcpc263.o Amplicon PC263, PCI263
	6.1.15. amplcpci224.o Amplicon PCI224, PCI234
	6.1.16. amplcpci230.o Amplicom PCI230, PCI260 Multifunction I/O boards
	6.1.17. c6xdigio.o Mechatronic Systems Inc. C6xDIGIO DSP daughter card
	6.1.18. cbdas16cs.o Computer Boards PCCARD DAS16/16
	6.1.19. cbpcidas.o MeasurementComputing PCIDAS series with the AMCC S5933 PCI controller
	6.1.20. cbpcidas64.o MeasurementComputing PCIDAS64xx, 60XX, and 4020 series with the PLX 9080 PCI controller
	6.1.21. cbpcidda.o MeasurementComputing PCIDDA series
	6.1.22. cbpcimdas.o Measurement Computing PCI Migration series boards
	6.1.23. cbpcimdda.o Measurement Computing PCIMDDA0616
	6.1.24. comedibond.o A driver to 'bond' (merge) multiple subdevices from multiple devices together as one.
	6.1.25. comediparport.o Standard PC parallel port
	6.1.26. comedirttimer.o Command emulator using realtime tasks
	6.1.27. comeditest.o generates fake waveforms
	6.1.28. contecpcidio.o Contec PIO1616L digital I/O board
	6.1.29. daqboard2000.o IOTech DAQBoard/2000
	6.1.30. das08.o DAS08 compatible boards
	6.1.31. das08cs.o DAS08 PCMCIA boards
	6.1.32. das16.o DAS16 compatible boards
	6.1.33. das16m1.o CIODAS16/M1
	6.1.34. das1800.o Keithley Metrabyte DAS1800 (compatibles)
	6.1.35. das6402.o Keithley Metrabyte DAS6402 (compatibles)
	6.1.36. das800.o Keithley Metrabyte DAS800 (compatibles)
	6.1.37. dmm32at.o Diamond Systems mm32at driver.
	6.1.38. dt2801.o Data Translation DT2801 series and DT01EZ
	6.1.39. dt2811.o Data Translation DT2811
	6.1.40. dt2814.o Data Translation DT2814
	6.1.41. dt2815.o Data Translation DT2815
	6.1.42. dt2817.o Data Translation DT2817
	6.1.43. dt282x.o Data Translation DT2821 series (including DTEZ)
	6.1.44. dt3000.o Data Translation DT3000 series
	6.1.45. dt9812.o Data Translation DT9812 USB module
	6.1.46. fl512.o unknown
	6.1.47. me4000.o Meilhaus ME4000 series boards
	6.1.48. gschpdi.o General Standards Corporation High Speed Parallel Digital Interface rs485 boards
	6.1.49. icpmulti.o Inova ICPMULTI
	6.1.50. iipci20kc.o Intelligent Instruments PCI20001C carrier board
	6.1.51. kecounter.o Driver for Kolter Electronic Counter Card
	6.1.52. medaq.o Meilhaus PCI data acquisition cards
	6.1.53. mpc624.o Micro/sys MPC624 PC/104 board
	6.1.54. mpc8260cpm.o MPC8260 CPM module generic digital I/O lines
	6.1.55. multiq3.o Quanser Consulting MultiQ3
	6.1.56. ni6527.o National Instruments 6527
	6.1.57. pcl711.o Advantech PCL711 and 711b, ADLink ACL8112
	6.1.58. ni660x.o National Instruments 660x counter/timer boards
	6.1.59. ni670x.o National Instruments 670x
	6.1.60. niata2150.o National Instruments ATA2150
	6.1.61. niatao.o National Instruments ATAO6/10
	6.1.62. niatmio.o National Instruments ATMIOE series
	6.1.63. niatmio16d.o National Instruments ATMIO16D
	6.1.64. nidaqdio24.o National Instruments PCMCIA DAQCard DIO24
	6.1.65. nilabpc.o National Instruments LabPC (compatibles)
	6.1.66. nilabpccs.o National Instruments LabPC (compatibles)
	6.1.67. nimiocs.o National Instruments DAQCard E series
	6.1.68. nipcidio.o National Instruments PCIDIO32HS, PCIDIO96, PCI6533, PCI6503
	6.1.69. s526.ko Sensoray 526 driver
	6.1.70. nipcimio.o National Instruments PCIMIOE series and M series (all boards)
	6.1.71. pcl724.o Advantech PCL724, PCL722, PCL731 ADLink ACL7122, ACL7124, PET48DIO
	6.1.72. pcl726.o Advantech PCL726 compatibles
	6.1.73. pcl725.o Advantech PCL725 (compatibles)
	6.1.74. pcl730.o Advantech PCL730 (compatibles)
	6.1.75. pcl812.o Advantech PCL812/PG, PCL813/B, ADLink ACL8112DG/HG/PG, ACL8113, ACL8216, ICP DAS A821PGH/PGL/PGLNDA, A822PGH/PGL, A823PGH/PGL, A826PG, ICP DAS ISO813
	6.1.76. pcl816.o Advantech PCL816 cards, PCL814
	6.1.77. pcl818.o Advantech PCL818 cards, PCL718
	6.1.78. pcm3724.o Advantech PCM3724
	6.1.79. pcm3730.o PCM3730
	6.1.80. pcmad.o Winsystems PCMA/D12, PCMA/D16
	6.1.81. pcmda12.o A driver for the Winsystems PCMD/A12
	6.1.82. pcmuio.o A driver for the PCMUIO48A and PCMUIO96A boards from Winsystems.
	6.1.83. poc.o Generic driver for very simple devices
	6.1.84. quatechdaqpcs.o Quatech DAQP PCMCIA data capture cards
	6.1.85. rtd520.o Real Time Devices PCI4520/DM7520
	6.1.86. rti800.o Analog Devices RTI800/815
	6.1.87. rti802.o Analog Devices RTI802
	6.1.88. s626.o (s626.ko) Sensoray 626 driver
	6.1.89. serial2002.o Driver for serial connected hardware
	6.1.90. skel.o Skeleton driver, an example for driver writers
	6.1.91. ssvdnp.o SSV Embedded Systems DIL/NetPC
	6.1.92. usbdux.c University of Stirling USB DAQ INCITE Technology Limited
	6.1.93. usbduxfast.c ITL USBDUXfast
	6.1.94. unioxx5.o Driver for Fastwel UNIOxx5 (analog and digital i/o) boards.
	6.1.95. adlpci7296.o Driver for the Adlink PCI7296 96 ch. digital io board
	6.1.96. pcmmio.o A driver for the PCMMIO multifunction board
	6.1.97. ni65xx.o National Instruments 65xx static dio boards
	6.1.98. nitio.o National Instruments general purpose counters
	6.1.99. jr3pci.o JR3/PCI force sensor board
	6.1.100. cbpcidio.o ComputerBoards' DIO boards with PCI interface

	7. Comedi Reference
	7.1. Headerfiles: comedi.h and comedilib.h
	7.2. Constants and Macros
	7.2.1. CRPACK
	7.2.2. RANGELENGTH (deprecated)
	7.2.3. enum comediconversiondirection

	7.3. Data Types and Structures
	7.3.1. subdevicestruct
	7.3.2. comedidevinfo
	7.3.3. comedit
	7.3.4. samplt
	7.3.5. lsamplt
	7.3.6. comeditrig (deprecated)
	7.3.7. comedisvt
	7.3.8. comedicmd
	7.3.9. comediinsn
	7.3.10. comedirange
	7.3.11. comedikrange
	7.3.12. comediinsnlist

	7.4. Comedi Function Reference

	comediclose
	Name
	Synopsis
	Description
	Return value

	comediopen
	Name
	Synopsis
	Description
	Return value

	comediloglevel
	Name
	Synopsis
	Description
	Return value

	comediperror
	Name
	Synopsis
	Description

	comedistrerror
	Name
	Synopsis
	Description

	comedierrno
	Name
	Synopsis
	Description

	comedifileno
	Name
	Synopsis
	Description

	comedigetnsubdevices
	Name
	Synopsis
	Description

	comedigetversioncode
	Name
	Synopsis
	Description

	comedigetdrivername
	Name
	Synopsis
	Description

	comedigetboardname
	Name
	Synopsis
	Description

	comedigetsubdevicetype
	Name
	Synopsis
	Description

	comedifindsubdevicebytype
	Name
	Synopsis
	Description

	comedigetreadsubdevice
	Name
	Synopsis
	Description

	comedigetwritesubdevice
	Name
	Synopsis
	Description

	comedigetsubdeviceflags
	Name
	Synopsis
	Description

	comedigetnchannels
	Name
	Synopsis
	Description

	comedirangeischanspecific
	Name
	Synopsis
	Description

	comedimaxdataischanspecific
	Name
	Synopsis
	Description

	comedigetmaxdata
	Name
	Synopsis
	Description
	Return value

	comedigetnranges
	Name
	Synopsis
	Description

	comedigetrange
	Name
	Synopsis
	Description

	comedifindrange
	Name
	Synopsis
	Description

	comedigetbuffersize
	Name
	Synopsis
	Description

	comedigetmaxbuffersize
	Name
	Synopsis
	Description

	comedisetbuffersize
	Name
	Synopsis
	Description

	comeditrigger
	Name
	Synopsis
	Status
	Description

	comedidoinsnlist
	Name
	Synopsis
	Description
	Return value

	comedidoinsn
	Name
	Synopsis
	Description

	comedilock
	Name
	Synopsis
	Description
	Return value

	comediunlock
	Name
	Synopsis
	Description

	comeditophys
	Name
	Synopsis
	Description

	comeditophysical
	Name
	Synopsis
	Description
	Return value

	comedifromphys
	Name
	Synopsis
	Description

	comedifromphysical
	Name
	Synopsis
	Description
	Return value

	comedidataread
	Name
	Synopsis
	Description

	comedidatareaddelayed
	Name
	Synopsis
	Description

	comedidatareadhint
	Name
	Synopsis
	Description

	comedidatawrite
	Name
	Synopsis
	Description

	comedidioconfig
	Name
	Synopsis
	Description

	comedidiogetconfig
	Name
	Synopsis
	Description

	comedidioread
	Name
	Synopsis
	Description

	comedidiowrite
	Name
	Synopsis
	Description

	comedidiobitfield
	Name
	Synopsis
	Status
	Description

	comedidiobitfield2
	Name
	Synopsis
	Description

	comedisvinit
	Name
	Synopsis
	Status
	Description

	comedisvupdate
	Name
	Synopsis
	Status
	Description

	comedisvmeasure
	Name
	Synopsis
	Status
	Description

	comedigetcmdsrcmask
	Name
	Synopsis
	Description

	comedigetcmdgenerictimed
	Name
	Synopsis
	Description

	comedicancel
	Name
	Synopsis
	Description

	comedicommand
	Name
	Synopsis
	Description

	comedicommandtest
	Name
	Synopsis
	Description

	comedipoll
	Name
	Synopsis
	Description

	comedisetmaxbuffersize
	Name
	Synopsis
	Description

	comedigetbuffercontents
	Name
	Synopsis
	Description

	comedimarkbufferread
	Name
	Synopsis
	Description

	comedimarkbufferwritten
	Name
	Synopsis
	Description

	comedigetbufferoffset
	Name
	Synopsis
	Description

	comedigettimer
	Name
	Synopsis
	Status
	Description

	comeditimed1chan
	Name
	Synopsis
	Status
	Description

	comedisetglobaloorbehavior
	Name
	Synopsis
	Status
	Description

	comediapplycalibration
	Name
	Synopsis
	Status
	Description
	Return value

	comediapplyparsedcalibration
	Name
	Synopsis
	Status
	Description
	Return value

	comedicleanupcalibrationfile
	Name
	Synopsis
	Status
	Description

	comedigetdefaultcalibrationpath
	Name
	Synopsis
	Status
	Description
	Return value

	comediparsecalibrationfile
	Name
	Synopsis
	Status
	Description
	Return value

	comedigethardcalconverter
	Name
	Synopsis
	Status
	Description
	Return value

	comedigetsoftcalconverter
	Name
	Synopsis
	Status
	Description
	Return value

	Glossary
	Application Program Interface
	buffer
	buffer overflow
	Differential IO
	Direct Memory Access
	First In, First Out
	Comedi command
	command
	configuration option
	instruction
	instruction list
	option
	option list
	overrun
	poll

